

EPSAT-NIGER SUIVI A LONG TERME

CAMPAGNE 1995

Jean Denis TAUPIN, Christophe LAROCHE, Joseph ROBIN

Janvier 1996

DMN

ORSTOM

AVANT-PROPOS

C'est la seconde année où un dispositif réduit de pluviographes est maintenu dans le cadre du suivi à long terme des précipitations sur le degré carré. En 1995, le dispositif pluviographique a été légèrement diminué par rapport à la campagne 1994 (67 appareils au lieu de 75). Le radar numérisé de Niamey, tombé en panne en août 1993, n'ayant pu être encore réparé cette année, aucune veille radar n'a pu être enregistrée.

La campagne 1995 est aussi la dernière année où les dispositifs expérimentaux annexes sont maintenus (comparaison pluviographes au sol et à 1,50 m, variabilité spatiale de petite échelle). A partir de 1996 seul le réseau de base de maille 25 km restera en place (25-30 postes), de plus, l'équipe ORSTOM sera progressivement remplacé par des agents de la DMN (Direction de la Météorologie du Niger) qui devraient gérer le réseau à partir de la saison des pluies 1997.

Outre la présentation, comme chaque année, de quelques résultats issus de la campagne 1995, ce rapport rappelle les principaux résultats des années précédentes à fin de comparaison des saisons des pluies entre elles.

Le maintien du réseau pluviographique avait, comme l'année dernière, pour principaux objectifs :

- le maintien d'une couverture pluviométrique suffisante pour les équipes ORSTOM travaillant encore sur le site central de Banizoumbou, dans le cadre de l'expérience HAPEX-Sahel (Goutorbe et al., 1994), ou SALT,

- le suivi pluviométrique à long terme du degré carré, dans le cadre du choix du futur site de validation en zone sahélienne du satellite micro-ondes TRMM (Tropical rainfall Measurement Mission, Simpson et al., 1988) qui sera lancé en 1997,

- l'acquisition de données complémentaires concernant la variabilité spatiale de petite échelle pour la seconde année avec le maintien du dispositif pluviographique du "kilomètre carré" (25 pluviographes répartis aux noeuds d'un réseau semi-régulier de maille de base 125 m).

Comme les années précédentes, un annuaire des pluies journalières enregistrées sur les 67 stations peut être disponible auprès du centre ORSTOM de Niamey.

SOMMAIRE

1. Caractéristiques de	la saison des pluies 1995	1
2. Le réseau de pluvic	ographes	15
3. Analyses prélimina	ires des données pluviographiques	28
4. Conclusions		 58
Références		59
Annexe 1	Gestion du réseau de pluviographes	A1.1
Annexe 2	Isohyètes des cumuls par épisodes	A2.1
Annexe 3	Tableaux des cumuls journaliers	A3.1
Annexe 4	Cumuls mensuels	A4.1
Annexe 5	Curnuls saisonniers sur le reseau nigérien	A5.1
Annexe 6	Fonctions de structure au pas de temps de l'événement, de la décade et du mois	A6.1
Annexe 7	Listes des fichiers crées lors du traitement des données pluviographiques	A7.1

CARACTERISTIQUES DE LA SAISON DES PLUIES 1995 SUR LA REGION DE NIAMEY

1

En 1995, la saison des pluies sur la région de Niamey a été marquée par une première pluie assez conséquente, mi-avril, suivie par une période de sécheresse relative jusqu'à la mi-juin où la saison des pluies s'est enfin affirmée. La fin de la saison des pluies a été relativement précoce, puisque l'on enregistre aucune précipitation importante après le 26 septembre. Malgré ce raccourcissement important de la durée de la saison des pluies, on note seulement un léger déficit pluviométrique sur l'ensemble du degré carré, par rapport à la période 68-94 (station de Niamey Aéroport- 502 mm). En terme climatologique, durant la saison 1995, parmi les systèmes de convections de mésoéchelle, on a pu observer un nombre élevé de lignes de grain (direction E-O, front bien marqué et vitesse entre 40 et 60 km.h⁻¹).

1.1 Distribution spatiale des cumuls saisonniers

La saison 1995 (période de référence choisie 15 avril-15 octobre), avec une moyenne estimée par krigeage de 495 mm, et un écart-type de 72 mm, apparaît comme une année très sèche sur le degré carré, par rapport à l'année 1994 où la saison des pluies a été assez exceptionnelle, 663 mm sur le degré carré. Cependant, cette moyenne est du même ordre que celle de la période sèche 1968-1994 (station de référence Niamey-Aéroport), elle est inférieure d'environ 50 mm à la moyenne pluviométrique de la période 1950-1994 (548 mm) et inférieure de 160 mm à la période pluvieuse 1950-1967 (654 mm).

Cette année, on n'observe pas de gradient climatologique nord-sud marqué, par contre, dans la bande sud du degré carré, sont concentrées les hauteurs de pluies les plus extrèmes, minima et maxima de part et d'autre de cette zone (figure 1). Ces valeurs minimale et maximale ont été enregistrées à la station de Sandideye (n°57) et de Torodi (n° 86) respectivement égales à 323 et 636 mm sur une distance est-ouest de 135 km (tableau 1). A noter que, pour la troisième année consécutive, Torodi est la station la plus arrosée du réseau.

Contrairement aux années précédentes, si l'on ne tient pas compte de la bande sud, les valeurs de pluies restent assez homogènes. Sur le site central de Banizoumbou (figure 2a) les valeurs varient entre 495 et 545 mm, ce qui donne de faibles gradients locaux (3-4 mm.km⁻¹). On constate quand même un pic pluviométrique très localisé sur la station de Boubon Golf (20 km au nord-ouest de Niamey) où l'on a enregistré la seconde valeur la plus grande soit 614 mm.Sur le site de Kobong, site du km² (figure 2b), la variabilité spatiale à l'échelle annuelle est par contre importante, comme l'année précédente, puisque sur une distance d'environ 800 m, on a une différence de 75 mm (n° 304 et 314) soit un écart de 17,0% par rapport à la valeur la plus faible.

1.2 Distribution temporelle

La distribution temporelle des pluies a été marquée par une grande hétérogénéité. La première pluie qui a touché le degré carré (principalement la zone de Niamey) a été enregistrée le 16 avril. Il faudra attendre ensuite pratiquement mi-juin pour que la saison démarre effectivement sur l'ensemble des stations (figure 3). On constate que la dernière décade de juillet marque aussi un léger arrêt dans la pluviosité, qui coïncide avec la période de sécheresse intra-saisonnière déjà repérée les années précédentes. La première pluie spatialement importante (au-moins 30% de stations touchées) a eu lieu le 6 mai (39% de stations touchées), mais la première averse conséquente en terme de quantité est enregistrée

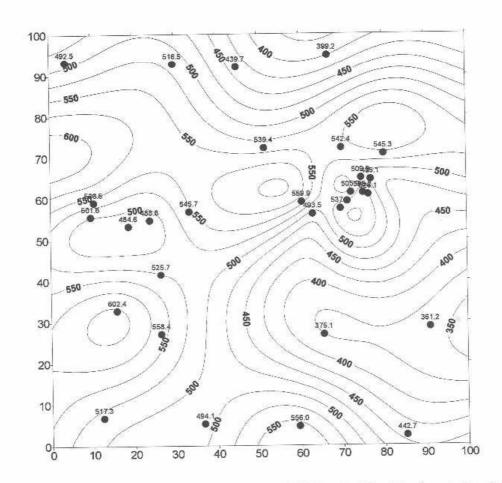


Figure 1: Isohyètes (mm) de la saison des pluies 1995 (15 avril - 15 octobre) sur le degré carré de Niamey. 38 stations (cumuls seau). Coordonnées en km ; origine 2°E, 13°N.

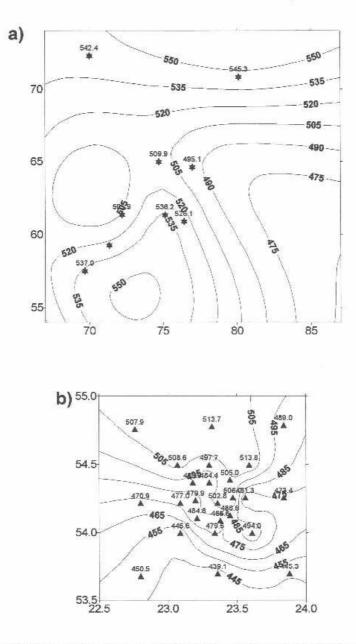


Figure 2: Zoom de la saison des pluies 1995 : a) site central ; b) site de Kobong.

Station	n°Epsat	date	date	cumul seau	cumul seau
		installation	démontage	période totale	15/04-15/10
Alkama	43	27/03	19/10	438,0	438,0
Banizoumbou	11	permanent	permanent	lacune	lacune
Banizoumbou sol	911	permanent	permanent	lacune	lacune
Bazanga	5	12/04	17/10	493,5	493,5
Beri Koira	21	23/03	18/10	539,4	539,4
Berkiawel	28	28/03	19/10	545,7	545,7
Bololadie	84	16/03	24/10	570,4	570,4
Boubon	85	18/03	20/10	613,7	613,7
BrousseTigree	401	13/04	17/10	526,1	526,1
Chef de Village	268	29/03	17/10	537,0	537,0
Darey	18	28/03	18/10	545,3	545,3
Debere Gati	25	15/03	24/10	517,3	517,3
Debere Gati sol	925	15/03	24/10	524,5	524,5
Fandou Beri	9	permanent	permanent	559,9	559,9
Gamonzon	34	20//03	20/10	413,7	413,7
Gardama	50	31/03	16/10	516,5	516,5
Gorou Goussa	80	25/03	16/10	492,5	492,5
Gorou Goussa sol	980	25/03	16/10	563,8	563,8
Guilahel	49	13/03	25/10	602,4	602,4
Hama Jachere	411	13/04	17/10	536,2	536,2
Harikanassou	41	20/03	20/10	361,2	361,2
IH Jachere	105	13/03	25/10	558,4	558,4
Kaligorou	61	27/03	19/10	524,2	524,2
Kare	29	15/03	25/10	494,1	494,1
Kokorbe Fandou	73	23/03	18/10	399,2	399,2
Kollo	54	permanent	24/10	525,7	525,7
Kollo sol	954	permanent	24/10	552,6	552,6
Koure Kobade	26	21/03	23/10	495,1	495,1
Koure Sud	51	21/03	23/10	375,1	375,1
Koyria	82	18/03	20/10	421,2	421,2
Mali Djibo	269	29/03	17/10	505,9	505,9
Massi Koubou	78	23/03	18/10	439,7	439,7
Niamcy Aeroport	94	permanent	permanent	484,6	484,6
Niamey IRI	83	permanent	permanent	501,6	501,6
Niamey Orstom	70	permanent	permanent	536,5	536,5
Samadey 2	405	18/04	17/10	495,1	495,1
SD Bagou	410	18/04	17/10	509,9	509,9
Sandideye	57	20/03	20/10	323,1	323,1
Tanaberi	32	17/03	24/10	556,0	556,0
Torodi	86	15/03	24/10	636,0	636,0
Wankama	116	28/03	18/10	542,4	542,4
Yillade	35	21/03	23/10	442,7	442,7

Tableau 1: Cumuls mesurés sur la période de fonctionnement et sur la période 15 avril - 15 octobre.

Kobong 301	301	10/04	2/10	50/1.0	T
Kobong 302	302	10/04	2/10	502,8	502,8
Kobong 303	303	6/04	2/10	466,6	466,6
Kobong 304	304	3/04		479,6	479,6
Kobong 305	305	3/04	2/10	439,1	439,1
Kobong 306	306	3/04	2/10	445,3	445,3
Kobong 307	307	4/04	2/10	473,4	473,4
Kobong 308	308	4/04	2/10	488,8	488,8
Kobong 309	309	0.8833	2/10	513,7	513,7
Kobong 310	310	5/04	2/10	507,9	507,9
Rooms 510	510	5/04	2/10	470,9	470,9
Kobong 311	311	3/04	2/10	450,5	450,5
Kobong 312	312	5/04	2/10	508,6	508,6
Kobong 313	313	5/04	2/10	497,7	497,7
Kobong 314	314	6/04	2/10	513.8	0.000323
Kobong 315	315	7/04	2/10	489,9	513,8
Kobong 316	316	7/04	2/10	484,4	489,9
Kobong 317	317	7/04	2/10	Contraction of the	484,4
Kobong 318	318	6/04	2/10	505,0	505,0
Kobong 319	319	7/04	2/10	477,0	477,0
Kobong 320	320	10/04	1	479,9	479,9
		10/04	2/10	506,0	506,0
Kobong 321	321	7/04	2/10	461,3	461,3
Kobong 322	322	10/04	2/10	484,8	
Cobong 323	323	10/04	2/10	488.6	484,8
Kobong 324	324	6/04	2/10	446,6	488,6
Kobong 325	325	6/04	2/10	493,5	446,6 493,5

Tableau 2: Liste des 32 événements majeurs enregistrés en 1995 à partir de 39 stations. (sur Kobong seule la station 307 est conservée).

seule la station 307 est conservee). Un événement majeur est comptabilisé dés lors que 30% (P) au moins des stations en fonctionnement (N) enregistrent une quantité de pluie supérieure à 1 mm. Les cumuls T sont exprimés en 1/10 mm ainsi que les quantités maximales de pluies enregistrées pendant l'événement en 5, 10, 15, 30, 60 minutes. Les nombres de taille réduites correspondent aux station où l'on a relevé l'intensité maximale à un pas de temps donné pendant l'événement. i, j correspondent respectivement à la première et à la dernière station touchée. Le temps de passage de l'événement sur le degré carré est donné en minutes. La moyenne pluviométrique krigée par événement, sur le degré carré, est donnée en mm.

No	debut	fin	N	Р	i	j	5	10	15	30	60	total	durée	moy, krigé
t	6/5a 1h10'	6/5 a 5h40'	39	38.5	49	94	40 105	71 49	102 49	181 49	245 49	335 25	275	3.3
2	29/ 5 a 19h10'	30/5 a 1h30'	39	30.8	61	35	50 29	93 29	124 29	145 29	180 61	215 61	385	3.2
3	7/ 6 a 17h25'	7/6 a 20h35'	39	61.5	25	86	46 86	65 86	101 86	145 86	206 86	360 86	195	2.1
1	13/6 a 2h20'	13/6 a 6h20'	39	61.5	34	105	40 9	60 9	78 9	80 9	80 9	80 9	245	2.1
5	14/6 a 21h50'	15/6 a 0h40'	39	74.4	73	54	73 94	126 5	160 94	217 307	250 83	255 83	175	5.5
5	16/ 6 a 23h20'	17/6 a 2h 0'	39	56.4	57	86	99 25	165 26	218 26	292 26	325 26	325 26	165	4.8
7	20/6 a 10h30'	20/ 6 a 14h 0'	38	100.0	43	28	98 54	154 5	195 5	286 51	330 51	330 51	215	15.5
8	25/6a 6h15'	25/ 6 a 12h50'	39	97.4	43	86	77 49	148 49	213 49	350 49	562 49	660 49	400	28.8
9	8/7 a 5h30°	8/7a 9h45'	39	87.2	43	70	96 61	175 61	248 61	370 61	420 116	490 61	260	14.7
10	11/7 a 3h50'	11/7 a 9h30'	38	100.0	61	84	134 73	228 105	289 105	426 105	685 18	735 18	345	32.0
11	13/7 a 4h40'	13/7 a 8h30'	39	89.7	61	86	98 21	171 21	212 85	279 84	285 84	295 84	235	13.0
12	15/ 7 a 23h15'	16/7 a 3h50'	39	53.8	26	105	149 85	280 85	378 85	526 85	540 85	540 85	280	5.8
13	21/7 a 2h 0'	21/7 a 4h 0'	39	51.3	116	82	116 85	211 21	295 21	422 21	435 21	435 21	125	8.5
14	22/7 a 6h10'	22/7 a 13h30'	39	89.7	61	85	75 80	131 80	176 80	312 50	390 50	465 49	445	18.2
15	29/ 7 a 22h 5'	30/7 a 3h45'	39	79.5	57	86	127 268	237 268	298 268	371 268	405 29	440 29	345	10.6
16	1/8 a 6h45	1/8 a 13h25'	39	100.0	26	82	50 29	88 29	125 29	201 29	298 80	435 80	405	16.8
17	4/8 a 1h50'	4/8 a 7h35'	39	94.9	43	82	90 26	134 57	204 57	255 57	270 73	295 50	350	10,1
18	8/8 a 4h25'	8/8 a 11h15'	39	100.0	61	82	136 21	248 21	336 9	540 9	755 9	895 268	415	
19	11/8 a Oh50'	11/8 a 6h45'	39	100.0	26	86	114 28	199 61	241 28	302 61	335 61	500 26	360	
20	13/8 a 2h10'	13/8 a 7h 0'	39	87.2	43	82	81 70	123 83	150 85	256 85	414 50	475 50	295	
21	14/8 a 18h 0'	15/8 a Oh45'	39	100.0	26	86	125 26	245 26	332 26	426 411	481 411	710 410	410	
22	17/8 a 1h10'	17/8 a 7h55'	39	100.0	57	82	79 51	136 86	181 86	278 49	320 49	18	410	
23	18/ 8 a 21h55'	19/8 a 2h55'	39	100.0	26	86	103 49	180 49	225 11	285 105	321 105	355 105		
24	21/8 a 5h25'	21/8 a 10h 0'	39	84.6	57	84	67 61	114 34	146 34	197 34	205 34	34		
25	23/8 a 2h35'	23/8 a 8h40'	38	92.1	34	29	162 18	318 18	436 18	538 18	555 18	18		
26	24/ 8 a 22h15'	25/8 a 3h40'	38	100.0	57	82	70 70	131 70	170 70	190 61	190 61	70		
27	29/ 8 a 21h50	30/8 a 8h25'	39	100.0	26	73	130 32	230 32	300 32	425 32	549 32	875 32		
28	10/9 a 4h35'	10/9 a 7h 5'	39	84.6	61	85	51 43	70 43	81 43	85 43	95 43	110 43		
29	12/9 a 2h40'	12/9 a 7h35'	39	79.5	43	82	93 80	166 80	219 80	287 80	305 80		300	7.3

30	14/9 a 15h10'	14/9 a 21h 5'	39	100.0	61	84	82 26	152 26	212 61	301 61	325 61	355 61	360	10.2
31	22/9 a 22h25'		39	46.2	43	78	120 78	212 78	267 78	365 78	385 78	405 78	200	6.0
32	26/9 a 3h 5'	26/9 a 9h55'	39	100.0	26	82	110 11	217 11	314 11	519 11	621 11	660 11	415	23.6
	Мах	kima Maximoru	n		sur sur sur :	10 mn 15 mn 30 mn 60 mn	: 162 : 318 : 436 : 540 : 755 895							

 \mathbf{r}

suite du tableau 2

le 20 juin montrant bien l'aspect tardif de la mise en place de la saison des pluies 1995 (tableau 2). Les dernières pluies importantes spatialement ont été enregistrées fin septembre, ce qui marque une fin de saison assez précoce. Par contre, la dernière pluie, celle du 26 septembre apporte une contribution importante au bilan hydrique puisque la moyenne sur le degré carré est égale à 23,6 mm (7ème événements en quantité). En comparant avec les années 1990 à 1994, le nombre d'événements majeurs est le plus faible que l'on ait observé depuis 1990. La relation hauteur de pluie saisonnière et nombre d'événements n'est donc pas aussi implicite que l'on pouvait le penser car des années nettement déficitaires telles les saisons 1990 et 1993 donnent 37 et 38 événements spatiaux (la comparaison reste valable malgré des réseaux plus fournis en nombre de postes en 1990 et 1993 car si l'on dégrade ces réseaux de façon que l'on ait concordance avec le réseau 95 le nombre d'événements majeurs touchant le degré carré n'est pas affecté).

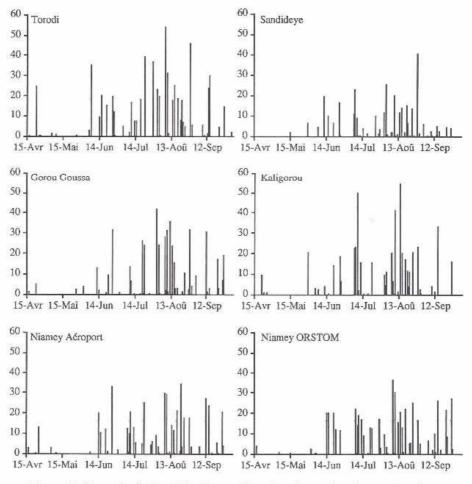


Figure 3: Chronologie des pluies journalières (mm) enregistrées sur 6 stations.

Le cumul total des événements majeurs représente 92% du total saisonnier soit 454 mm, ce qui est aussi remarquable par rapport aux autres années où ce cumul en représentait

seulement environ 80%. Si l'on se base sur les événements majeurs, qui peuvent être considérés, en l'occurence, comme représentatif du total saisonnier, la distribution des précipitations au coeur de la saison suit une évolution normale. Le cumul des événements majeurs pour les mois de juillet, août et septembre représente 86% du total, respectivement 23% (7 événements), 52% (12 événements) et 5% (5 événements) du cumul saisonnier. On note que le retard pluviométrique pris en début de saison a été comblé grâce aux importantes précipitations du mois d'août. Par comparaison au poste de Niamey (période 1950-1989,) juillet, août et septembre représentent 26%, 32% et 15% du cumul saisonnier. L'épisode qui a donné la hauteur de pluie moyenne la plus importante sur le degré carré (38,9 mm) s'est passé le 8 août. Par rapport aux cinq saisons précédentes ce cumul maximal enregistré sur la saison est comparable à ceux des années 1991 - le 3 août, 36 mm et 1993 - le 13 août, 37 mm.

La comparaison des cumuls mensuels pour les 3 stations de Niamey montre une homogénéité des valeurs comme à l'échelle annuelle. En comparant avec la moyenne sur la période 1950-89, on note effectivement un déficit pluviométrique important au mois de mai et au mois d'octobre ainsi qu'au mois de juillet (figure 4).

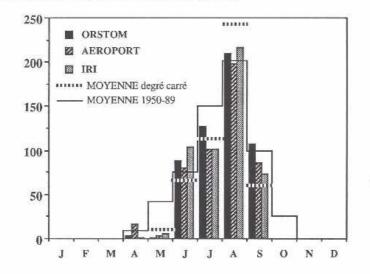


Figure 4: Comparaison des cumuls mensuels 1995 (mm) des 3 stations de Niamey avec les cumuls moyens mensuels sur la période 1950-89.

1.3 Situation pluviométrique annuelle à l'échelle du Niger

La saison 1995 est marquée par deux tendances climatologiques différentes selon la latitude (figure 5). En dessous du 15ème parallèle les isohyètes montrent une bonne adéquation avec les isohyètes moyennes de la période sèche 1968-94, ceci est en accord avec les résultats obtenus sur le degré carré. Par contre au dessus du 15ème parallèle on décèle un déficit important, les isohyètes 100 et 200 mm étant très en retrait vers le sud par rapport à celles de la période 1968-94. Ceci est d'autant plus marqué vers 7° de longitude où le retrait atteint plusieurs centaines de kilomètres. Par contre la pluviométrie à Bilma, station située au 19° parallèle, a atteint 21,5 mm ce qui est largement au-dessus de la moyenne sur les périodes 1950-94 (12,3 mm), 1950-67 (18,5mm) et 1968-94 (8,1 mm).

Par comparaison avec les cartes d'isohyètes du Niger des années 1990 à 1994 (figure 6), le déficit au nord du Niger est assez considérable puisque c'est le plus important de ces 6 dernières années alors que les saisons 1990 et 1993 ont été nettement plus déficitaires sur le degré carré. Cette variabilité spatiale montre la complexité des mouvements des masses d'air

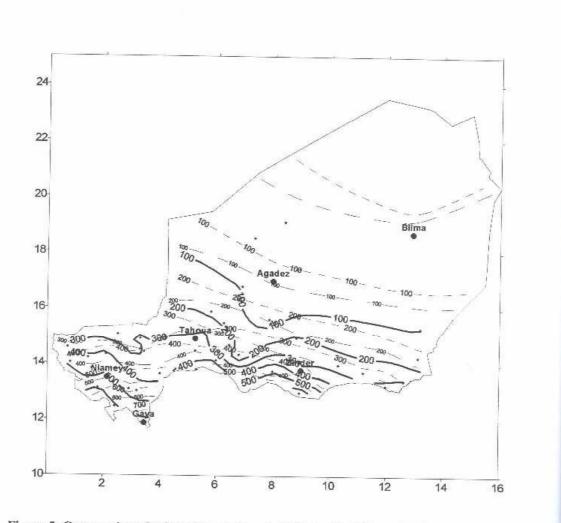
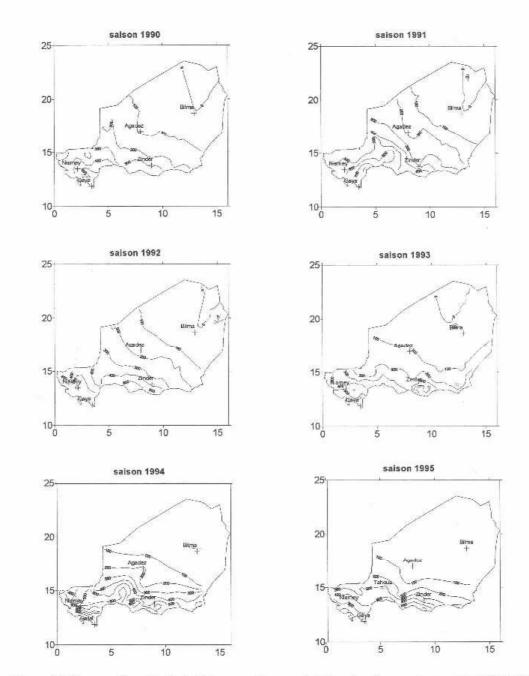
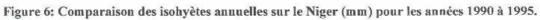




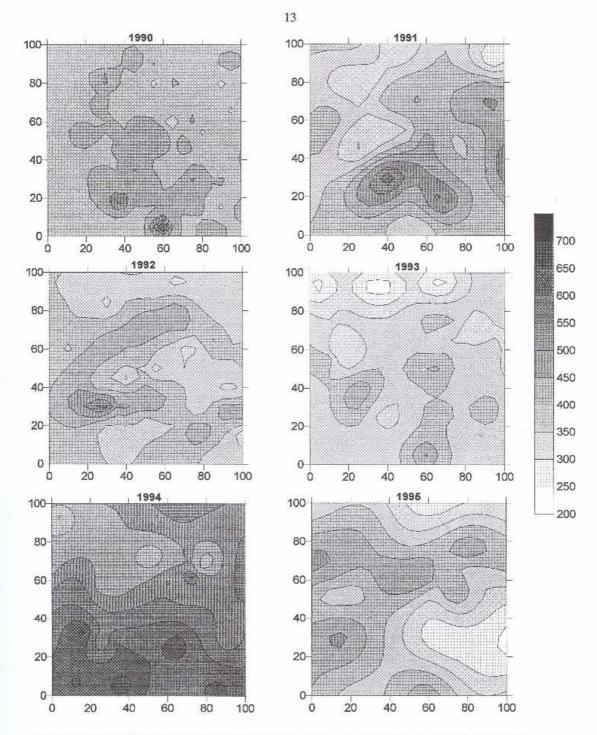
Figure 5: Comparaison des isohyètes de l'année 1995 (trait plein) sur le Niger avec les isohyètes inter-annuelles sur la période 1950-94 (petit tireté) et sur la période 1968-94 (grand tireté).

qui localement ou régionalement peuvent apporter un excédent pluviométrique alors qu'un déficit à plus grande échelle ou localement existe, et inversement. L'importance de la montée du F.I.T. vers le nord contrôle en partie la pluviogénie des masses d'air au-dessus de la zone sahélienne mais ce sont les données climatologiques locales qui favorisent ou non le déclenchement et l'importance de la pluviométrie.

1.4 Comparaison avec les résultats acquis les autres années de l'expérience EPSAT-NIGER - 1990 à 1994

Reprenant les conclusions des rapports précédents, les six années de mesures du dispositif EPSAT-NIGER présentent, tant dans l'espace que dans le temps, une variabilité importante (figure 7). Si l'on considère que les six années d'EPSAT-Niger donnent un échantillon assez représentatif de la période actuelle pour une approche climatologique, on constate que la moyenne des six années sur le degré carré donne une valeur de 512 mm. Ceci montre bien que la zone est dans une période climatique de sécheresse stable depuis la fin des années 1960. L'analyse du cumul des années (somme des grille saisonnières issues du krigeage, figure 8) révèle bien l'existence d'un gradient nord-sud caractéristique de la climatologie de l'Afrique Occidentale, que l'on ne distingue pas toujours à l'échelle annuelle. Une particularité apparait aussi, c'est la persistance d'année en année de zones localement plus arrosées et qui conservent ces attributs sur l'ensemble des saisons, c'est le cas, au sud du degré carré, de la zone autour du poste de Guilahel ou de Tanaberi et au nord de celle de

Au vu de l'énorme variabilité spatiale qui existe à l'échelle saisonnière, il reste important de noter que le calcul d'une moyenne spatiale sur une surface donnée n'est représentatif que si le réseau de mesures rend compte, du moins en partie, de cette hérogénéité. Pour le Sahel, les résultats montrent qu'une dizaine de postes, répartis régulièrement sur la surface où l'on veut calculer la pluie moyenne, est suffisant (Taupin et al., 1993). Il reste néanmoins que cette moyenne "régionale" est à manipuler avec précaution, sachant que la variabilité des valeurs est telle que 30 à 40 % des stations s'en éloignent de plus d'un écart-type.


Le tableau 3 résume les principaux paramètres pluviométriques obtenus sur le degré carré. Sur les six années d'étude, on observe :

- à l'échelle interannuelle, une variation de la moyenne spatiale de plus de 50% par rapport à la valeur moyenne la plus faible, - un rapport constant, à peu près égal à 2 entre les valeurs extrêmes,

- un coefficient de variation ayant le même ordre de grandeur pour toutes les années.

Tableau 3: Valeurs pluviométriques caractéristiques enregistrées au cours des six campagnes d'EPSAT-NIGER.

Année	Ma	Cui	Maxima à une station (mm)				
	Moy D.C. (μ)	Min (m)	Max (M)	ECT	(M-m)/µ (%)	C.V. (%)	Max. Max. Max. 5' 60' Evt
1990	419	292	659	62	88	14,8	30,0 75,0 102,0
1991	522	341	725	79	74	15,1	17,5 85,0 162,0
1992	513	389	782	68	77	13,3	29,0 74,5 92,0
1993	463	314	621	84	66	18,1	15,5 80,8 95,5
994	663	492	856	90	55	13,5	15,0 108,8 120,0
995	495	323	636	72	63	14,5	16,2 75,5 89,5

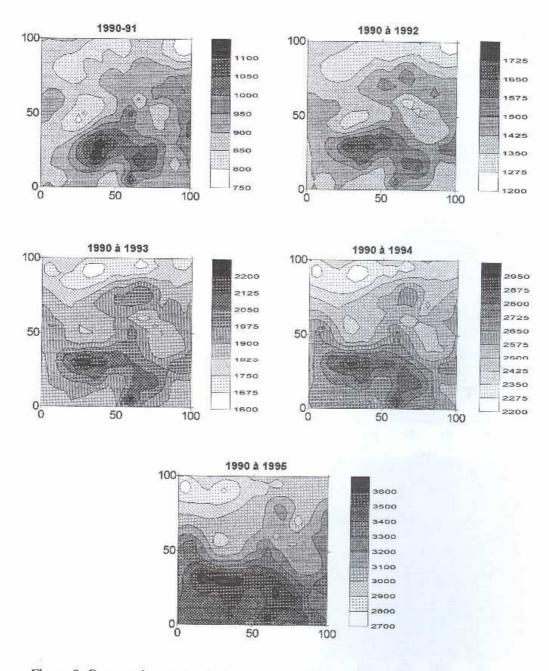


Figure 8: Comparaison de la pluviométrie annuelle cumulée des différentes années.

LE RESEAU DE PLUVIOGRAPHES

2.1 Le réseau en 1995

L'expérimentation EPSAT-Niger est dans une phase de suivi à long terme depuis la saison 1994, ceci avec un nombre plus restreint de pluviographes. Par rapport à 1994, le nombre de stations a aussi légèrement diminué en fonction du besoin des équipes partenaires. Ainsi les stations IH mil dans le secteur site central sud, Samadey 1, 3, 4, 5, Samadey jupe 1 et 2 et Wankama ouest dans le site central de banizoumbou ont été supprimées. Une nouvelle station a été installée dans le site central, Hama jachère. Le réseau ne comporte donc plus que 67 pluviographes dont 4 au sol au lieu des 75 pluviographes de la saison 1994 (tableaux 4 et 5). Le type de pluviographe est à augets basculeurs, munis de cônes de 400 cm2 (Lebel et al., 1991)

Comme pour les différentes saisons instrumentées, la couverture pluviographique couvre environ 16 000 km², limitée en longitude par les méridiens 1°40 E et 3°E et en latitude par les parallèles 13 et 14° N.

La répartition du réseau a été définie en fonction des mêmes objectifs qu'en 1994.

Elle a été conçue selon trois différentes échelles d'espace (figure 9):

- à l'échelle de l'ensemble de la zone (16 000 km²), 31 sites pluviographiques à 1,50 m du sol ont été conservés, disposés de façon régulière, ils constituent le réseau de base qui sert dans le cadre du suivi à long terme de la pluviométrie,

- à l'échelle du supersite central, (400 km²), le réseau a été fortement allégé, il ne comporte plus que 9 appareils, dont 2 font partie du réseau de base, - à l'échelle du km², 25 stations disposées selon le schéma de la **figure 9** ont été réinstallées

à côté de l'aéroport de Niamey pour étudier la variabilité spatiale à des petits pas d'espace.

2.2 Installation et surveillance du réseau

Huit postes ont fonctionné en permanence entre la fin de la saison des pluies 1994 et le début de la saison des pluies 1995. Les autres ont été démontés, nettoyés, testés et entreposés durant la saison sèche. Une usure importante des cosses électriques et des soudures fils-ampoules à mercure ayant été source de nombreuses pannes en 1994, toutes les soudures ont été refaites pour la campagne 1995, avec succès puisque l'on a enregistré peu de pannes d'origine électrique durant la saison. Comme chaque année, un certain nombre de cartes électroniques "oedipe" se sont avérées hors d'usage au cours de la saison (5) et, ont été remplacées immédiatement à partir du stock constitué par le surplus de pluviographes issus du réseau dense d'EPSAT-Niger.

Le planning d'installation des stations (tableau 1) a commencé le 13 mars et s'est terminé le 18 avril.

La plupart des stations implantées près des villages, ont été surveillées en permanence par un gardien, ce qui évite les déprédations et vols constatés sur quelques stations non surveillées situées loin des villages. Pour obtenir un suivi de la meilleure qualité possible, compte tenu du personnel disponible et du budget, chaque station a reçu une visite de contrôle tous les 20-25 jours durant toute la saison des pluies. Pour certaines stations situées près de Niamey, par exemple le site de Kobong, la périodicité des visites a été de 2 semaines. Les cartouches ont été changées environ tous les 30 à 45 jours pour permettre de suivre l'évolution de la saison des pluies en temps le moins décalé possible.

En fin de saison, le démontage des stations s'est effectué entre le 2 et le 25 octobre, vu la fin précoce de la saison des pluies.

Tableau 4: Liste des 6	postes du réseau en	n 1995, classés par ordre alphabétique
------------------------	---------------------	--

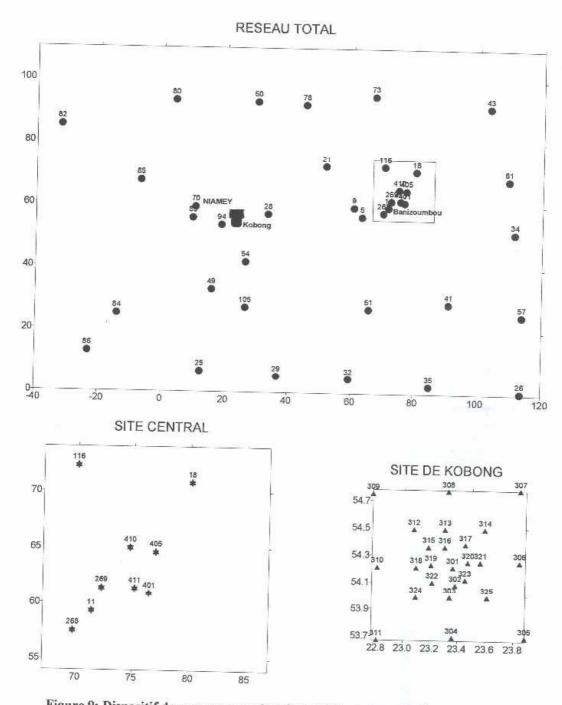
station	Identification	La	titude		Lor	igitude		Altitude	Х	Y	TDOAD
		deg	min	sec	deg	min	sec	211111100	A	r	EPSAT
Alkama	1321204300	13	49	19	2252						
Banizoumbou	1321204300	199753	0.255		02	57	28	205	103,32	91,39	4
Banizoumbou sol	1321201100	13	31	58	02	39	37	202	71,34	59,25	1
Bazanga Bangou		13	31	58	02	38	37		71,34	59,25	91
Beri Koira	1321200500	13	30	20	02	34	59	266	63,01		
Berkiawel	1321202100	13	38	59	02	28	37	215	51,49		2
Bololadie	1321202800	13	30	41	02	18	31		33,33		2
Boubon Golf	1321208400	13	13	29	01	52	12		-14,06		8
Brousse Tigree	1321208500	13	36	24	01	56	09		-6,93		8
	1321240100	13	32	51	02	42	27		76,43	60,88	40
Chef de Village	1321226800	13	31	01	02	38	42		69,69	57,49	26
Darey	1321201800	13	38	12	02	44	32	250	00.14	-	
Debere Gati	1321202500	13	03	40	02	06	52	230	80,14	70,80	1
Debere Gati sol	1321292500	13	03	40	02	06	52	230	12,38	6,78	2:
Fandou Beri	1321200900	13	31	55	02	33	31	000	12,38	6,78	92
Gamonzon	1321203400	13	27	40	02	01	54	232	60,36	59,14	5
Gardana Kouara	1321205000	13	50	04	02	16	5500	0.10	111,49	51,28	34
Jorou Goussa	1321208000	13	50	18	02	02	33	212	29,78	92,78	50
Jorou Goussa sol	1321298000	13	50	18	02	02	08		3,83	93,22	80
Juilahel	1321204900	13	17	41	0.00	1000	08	12129730	3,83	93,22	980
Iama jachère	1321241100	13	33	05	02 02	08 41	45 44	274	15,77	32,79	49
		2.2.5		02	02	41	44		75,14	61,33	411
larikanassou	1321204100	13	15	28	02	50	28	208	90,99	28,65	
H Jachere hapex 1	1321210500	13	14	38	02	14	39		26,41		41
aligorou	1321206100	13	36	44	03	00	47	200	109,4	27,11	105
are	1321202900	13	02	52	02	20	19	200	36,65	68,09	61
okorbe Fandou	1321207300	13	51	10	02	37	11	200	66,85	5,32	29
ollo	1321205400	13	22	27	02	14	40	198	1.000	94,82	73
ollo sol	1321295400	13	22	27	02	14	40	190	26,42	41,61	54
oure Kobade	1321202600	13	00	17	03	03	00	220	26,42	41,61	954
ourc Sud	1321205100	13	14	31	02	36	18		113,71	0,52	26
oyria	1321208200	13	46	00	01	42	00	255	65,45 -32,38	26,89 85,25	51 82
ali Djibo	1321226900	10	2.0	60					52,50	00,40	02
assi Koubou		13	33	06	02	40	06		72,21	61,36	269
amey Acroport	1321207800	13	49	37	02	25	00	250	44,95	91,94	78
amey IRI	1321209400	13	28	47	02	10	23		18,71	53,36	94
amey ORSTOM	1321208300	13	30	00	02	05	21		9,63	55,6	83
madey 2	1321207000	13	31	52	02	05	48	220	10,44	59,07	70
D Bagou	1321240500	13	34	51	02	42	46		76,99	64,59	405
ndideye	1321241000	13	35	05	02	41	50		74,71	64,96	410
naberi	1321205700	13	13	31	03	03	14	230	114,01	25,06	57
	1321203200	13	02	30	02	32	53		59,34	4,63	32
rodi	1321208600	13	07	00	01	47	06		-23,27	12,97	86
mkama	1321211600	13	39	00	00	20					
lade	1321203500	13	01	135711	02	38	55		70,02	72,28	116
		13	01	16	02	47	10	237	85,12	2,35	35

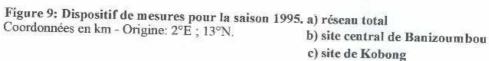
Kobong 301	1321230100	13	29	15	02	12	58	23,36	54,21	301
Kobong 302	1321230200	13	29	11	02	12	59	23,38	54,08	302
Kobong 303	1321230300	13	29	08	02	12	58	23,34	53,99	302
Kobong 304	1321230400	13	28	58	02	12	58	23,36	53,69	303
Kobong 305	1321230500	13	28	58	02	13	16	23,88	53,69	
Kobong 306	1321230600	13	29	16	02	13	14	23,88	54,25	305
Kobong 307	1321230700	13	29	34	02	13	14	8 m 8 m 8 m 8 m 8 m 8 m 8 m 8 m 8 m 8 m	21. J. 27 25. J.	306
Kobong 308	1321230800	13	29	33	02	12	57	23,84	54,78	307
Kobong 309	1321230900	13	29	32	02	12	38	23,32	54,77	308
Kobong 310	1321231000	13	29			2012		22,76	54,75	309
icitioning 510	1521251000	1.5	29	15	02	12	40	22,8	54,21	310
Kobong 311	1321231100	13	28	58	02	12	40	22,8	53,67	311
Kobong 312	1321231200	13	29	24	02	12	49	23,07	54,49	312
Kobong 313	1321231300	13	29	24	02	12	56	23,3	54,49	313
Kobong 314	1321231400	13	29	24	02	13	06	23,59	54,49	314
Kobong 315	1321231500	13	29	20	02	12	52	23,18	54,36	315
Kobong 316	1321231600	13	29	20	02	12	56	23,3	54,36	316
Kobong 317	1321231700	13	29	20	02	13	01	23,45	54,38	317
Kobong 318	1321231800	13	29	15	02	12	49	23,09	54,21	318
Kobong 319	1321231900	13	29	16	02	12	53	23.2	54,23	319
Kobong 320	1321232000	13	29	16	02	13	02	23,47	54,25	320
Kobong 321	1321232100	13	29	16	02	13	05	23,56	54,25	321
Kobong 322	1321232200	13	29	11	02	12	53	23,21	54,1	321
Kobong 323	1321232300	13	29	12	02	13	01	23,45	54,12	
Kobong 324	1321232400	13	29	08	02	12	49	23,09	53,99	323
Kobong 325	1321232500	13	29	08	02	13	07	23,61	53,99	324 325

 X Y coordonnées dans le degré carré (origine du repère 2 E, 13N) :

 Y= (Latd.-13)*111,2
 en km

 X=(Longd.-2)*(108,.3-0,5*Y/111.2)
 en km


Latd, et Longd, en degré décimaux


Par rapport à 1994, le réseau sur le site central a été fortement allégé, on a démonté les stations Wankama ouest (267), Samadey 1 (404), Samadey 3 (406), Samadey 4 (407), Samadey 5 (408), SD jupe 1 (402), SD jupe 2 (403), on a, par contre, implanté une nouvelle station Hama Jachère (411). Sur le site sud on a supprimé aussi la station IH mil (106).

EPSAT	station	Identification	Lati	tude		Long	itude		Altitude	X	Y
JOAT	Sudon		deg	min	sec	deg	min	sec			
2		1221200500	13	30	20	02	34	59	266	63,01	56,21
i	Bazanga Bangou	1321200500		31	55	02	33	31	232	60,36	59,14
)	Fandou Beri	1321200900	13	51	20	02	35	24	202	00,00	
1	Banizoumbou	1321201100	13	31	58	02	39	37	202	71,34	59,25
8	Darey	1321201800	13	38	12	02	44	32	250	80,14	70,80
21	Beri Koira	1321202100	13	38	59	02	28	37	215	51,49	72,20
25	Debere Gati	1321202500	13	03	40	02	06	52	230	12,38	6,78
26	Koure Kobade	1321202600	13	00	17	03	03	00	220	113,71	0,52
20 28	Berkiawel	1321202800	13	30	41	02	18	31		33,33	56,8
	Kare	1321202900	13	02	52	02	20	19	200	36,65	5,32
29	Kare	1321202900	10	02	24	1997. 1997.					
32	Tanaberi	1321203200	13	02	30	02	32	53		59,34	4,63
34	Gamonzon	1321203400	13	27	40	03	01	54		111,49	51,2
35	Yillade	1321203500	13	01	16	02	47	10	237	85,12	2,35
41	Harikanassou	1321204100	13	15	28	02	50	28	208	90,99	28,6
43	Alkama	1321204300	13	49	19	02	57	28	205	103,32	91,3
49	Guilahel	1321204900	13	17	41	02	08	45	274	15,77	32,7
				50	0.4	02	16	33	212	29,78	92,7
50	Gardana Kouara	1321205000	13	50	04		-36	18	255	65,45	26,8
51	Koure Sud	1321205100	13	14	31	02	-30	40	198	26,42	41,6
54	Kollo	1321205400	13	22	27	02			230	114,01	25,0
57	Sandideye	1321205700	13	13	31	03	03	14	230	114,01	لول کے ا
61	Kaligorou	1321206100	13	36	44	03	00	47	200	109,40	68,0
70	Niamey ORSTOM	1321207000	13	31	52	02	05	48	220	10,44	59,0
73	Kokorbe Fandou	1321207300	13	51	10	02	37	11		66,85	94,8
78	Massi Koubou	1321207800	13	49	37	02	25	00	250	44,95	91,9
		170100000	13	50	18	02	02	08		3,83	93,2
80	Gorou Goussa	1321208000	13	46	00	01	42	00		-32,38	85,2
82	Koyria	1321208200	13	30	00	02	05	21		9,63	55,0
83	Niamcy IRI	1321208300		13	29	01	52	12		-14,06	24.9
84	Bololadie	1321208400	13	12.25	29	01	56	09		-6,93	67.
85	Boubon Golf	1321208500	13	36				06		-23,27	12,
86	Torodi	1321208600	13	07	00	01	47	00		-23,21	12,
94	Niamey Aeroport	1321209400	13	28	47	02	10	23		18,71	53,
105	IH Jachere hapex1	1321210500	13	14	38	02	14	39		26,41	27,
116	Wankama	1321211600	13	39	00	02	38	55		70,02	72,
268	Chef de Village	1321226800	13	31	01	02	38	42		69,69	57,
	CHOLOG VIHARO	1021220000	10	-2.4	20.00		40	06		72,21	61,

Tableau 5: Liste des 63 sites du réseau en 1995, classés par numéro.

301	Kobong 301	1321230100	13	29	15	02	12	58	23,36	54,21
302	Kobong 302	1321230200	13	29	11	02	12	59	23,38	54,08
303	Kobong 303	1321230300	13	29	08	02	12	58	23,34	53,99
304	Kobong 304	1321230400	13	28	58	02	12	58	23,36	53,69
305	Kobong 305	1321230500	13	28	58	02	13	16	23,88	53,69
306	Kobong 306	1321230600	13	29	16	02	13	14	23,84	54,25
307	Kobong 307	1321230700	13	29	34	02	13	14	23,84	54,78
308	Kobong 308	1321230800	13	29	33	02	12	57	23,32	54,77
309	Kobong 309	1321230900	13	29	32	02	12	38	22,76	54,75
310	Kobong 310	1321231000	13	29	15	02	12	40	22,80	54,21
311	Kobong 311	1321231100	13	28	58	02	12	40	22,80	53,67
312	Kobong 312	1321231200	13	29	24	02	12	49	23,07	54,49
313	Kobong 313	1321231300	13	29	24	02	12	56	23,30	54,49
314	Kobong 314	1321231400	13	29	24	02	13	06	23,59	54,49
315	Kobong 315	1321231500	13	29	20	02	12	52	23,18	54,36
316	Kobong 316	1321231600	13	29	20	02	12	56	23,30	54,36
317	Kobong 317	1321231700	13	29	20	02	13	01	23,45	54,38
318	Kobong 318	1321231800	13	29	15	02	12	49	23,09	54,21
319	Kobong 319	1321231900	13	29	16	02	12	53	23,20	54,23
320	Kobong 320	1321232000	13	29	16	02	13	02	23,47	54,25
321	Kobong 321	1321232100	13	29	16	02	13	05	23,56	54,25
322	Kobong 322	1321232200	13	29	11	02	12	53	23,21	54,10
323	Kobong 323	1321232300	13	29	12	02	13	01	23,45	54,12
324	Kobong 324	1321232400	13	29	08	02	12	49	23,09	53,99
325	Kobong 325	1321232500	13	29	08	02	13	07	23,61	53,99
401	Brousse Tigree	1321240100	13	32	51	02	42	27	76,43	60,88
405	Samadey 2	1321240500	13	34	51	02	42	46	76,99	64,59
410	SD Bagou	1321241000	13	35	05	02	41	50	74,71	64,96
411	Hama jachère	1321241100	13	33	05	02	41	44	75,14	61,33

2.3 Fonctionnement

En 1995, on a enregistré le meilleur taux de fonctionnement depuis le début de l'expérience. Pour les 67 pluviographes, le taux a atteint environ 99% (137 jours de pannes pour 12937 jours d'appareillage). Ces pannes ont été essentiellement dues aux conditions externes (foudres, entonnoir bouché, blocage des augets). Neuf stations présentent des lacunes augets (tableau 6), mais sans conséquences véritable sur le dispositif car les pannes concernent 3 stations au sol, 4 stations sur le site de Kobong, les 2 stations de Banizoumbou et la station de Niamey IRI. Ce résultat a été obtenu grâce à une révision complète des appareils en début de saison (le matériel est mis à rude épreuve compte tenu du vieillissement, entre 3 et 5 ans de fonctionnement) et à une fréquence des visites d'entretien inférieure à 25 jours. Sur l'ensemble des stations, 87 % des stations ne présentent donc pas de lacune auget (pour le détail des pannes des stations en lacunes se reporter à l'annexe A-1). Ce faible taux de lacunes tant sur les augets qu'éventuellement sur les seaux a permis de reconstituer les

2.4 Dérives en temps

Comme les années précédentes, on constate une dérive en temps bien supérieure à celle donnée par le constructeur qui est normalement de 10 secondes par mois (**tableau 7**). Le nombre de postes utilisés en 1995 étant réduit, comme en 1994, on a pu écarter ceux présentant des dérives maximales. Les dérives sont comprises entre -4 et +48 minutes pour 100 jours, ce qui est du même ordre que les valeurs trouvées en 1994. On a quand même pu légèrement améliorer ces problèmes de dérive, 4 postes seulement ont une dérive supérieure à 30 minutes pour 100 jours (7 postes en 1994).

Même si la dérive peut être corrigée linéairement, il faut se montrer prudent dans l'étude spatiale des précipitations au petit pas de temps surtout pour les réseaux très denses tel celui du site de Kobong.

2.5 Comparaison valeurs seau et valeurs auget

cumuls saisonniers et mensuels de l'ensemble des stations.

Cette année, l'écart entre le cumul auget et le cumul seau pour la saison est resté faible grâce à la révision complète du mécanisme de basculement pendant la saison sèche précédant la campagne 1995. La plupart des postes ont aussi été haubannés, ce qui a réduit l'écart durant les événements où la vitesse du vent était importante.(tableau 8). L'écart maximal a été ramené à 7,7% et seulement 7 postes ont un écart supérieur à 5,0%. L'écart relatif moyen seau-augets sur les 59 postes sans lacune est égal à 3,2%. Tableau 6: Périodes de fonctionnement des 67 pluviographes (63 sites) installés en 1995.

EPSAT-N	IIGER :	Periodes	de foi	nctionn	ement	en 1995		
Stations		Period	es de f	onction	nement			
Nom	Mars	Avril	Mai	Juin	Juil.	Aout	sept.	Oct
							1	
Alkama								
Banizoumbou								_
Banizoumbou sol								
Bazanga Bangou	1 1							
Beri Koira	-							
Berkiawal								
Bololadie								
Boubon Golf								
Brousse Tigree								
Chef de Village	1							
Darey								
Debere Gati								
Debere Gati sol							-	
Fandou Beri								
Gamonzon								
Gardana Kouara								
Gorou Goussa	-							
Gorou Goussa sol	-				-			
Guilahel								
Hama Jachere								
Harikanassou								
IH Jachere, hapex1								
Niamey IRI								
Kaligorou								
Kare								
Kobong 301								
Kobong 302				-				
Kobong 303								1
Kobong 304								
Kobong 305								
	4							1
Kobong 306 Kobong 307								
Kobong 308	1							
Kobong 309								
	1							
Kobong 310								
Kobong 311								5 C
Kobong 312								
Kobong 313		-						-
Kobong 314								÷.
Kobong 315								-
Kobong 316								-
Kobong 317								-
Kobong 318				2 (1) (1) (1) (1) (1) (1) (1) (1) (1) (1)		The second second		

(obong 320	1 1	 	 	 	
lobong 321		 	 	 	
lobong 322		 	 	 	
obong 323	1 1	 	 	 	
obong 324	1 1	 	 	 	
lobong 325	1	 	 	 	
okorbe Fandou	120	 	 	 	
ollo		 	 	 	
Collo sol		 	 	 	
Coure Kobade	-	 	 	 	
oure Sud		 	 	 	
Coyria		 	 	 	
Mali Djibo		 	 	 	
lassi Koubou	-	 	 	 	
Niamey Aeroport		 	 	 	
Viamey ORSTOM		 	 	 	
Samadey 2		 	 	 	
D Bagou		 	 	 	
Sandideye		 	 	 	
Tanaberi		 	 	 	
forodi		 	 	 	
Vankama		 	 	 	
Yiladde	-	 	 	 	

Station	Cart. 1	Cart. 2	Cart. 3	Cart. 4	Cart. 5	Cart, 6
Alkama	26	26	26	27	26	
Banizoumbou	29	29	lacune	30	29	
Banizoumbou sol	29	29	lacune	30	29	
Bazanga Bangou	1	1	1	0	0	
Beri Koira	24	24	22	24	22	
Berkiawel	24	24	22	24	24	
Bololadic	32	30	29	29	30	
Boubon Golf	26	26	26	26	27	26
Brousse Tigree	6	6	7	7		
Chef de Village	7	7	7	7		
Darey	6	6	12	6		
Debere Gati	10	10	10	10	10	
Debere Gati sol	32	32	32	32	33	
Fandou Beri	7	8	7	8	8	
Gamonzon	29	29	30	29		
Gardana Kouara	10	10	10	8	10	
Gorou Goussa	16	16	15	16	16	
Gorou Goussa sol	0	0	-1	0	0	
Guilahel	27	27	27	27	27	
Hama jachère	35	35	35	35		
Harikanassou	12	12	12	12		
IH Jachere hapex l	48	46	48	46	46	46
Kaligorou	29	29	29	30	29	
Kare	6	6	6	6	7	
Kokorbe Fandou	12	12	12	13	12	
Kollo	-1	-1	-1	-1	-1	
Kollo sol	14	14	14	14	14	
Koure Kobade	13	13	13	14	13	
Koure Sud	7	7	7	7	7	
Koyria	10	12	10	7	6	
Mali Djibo	6	6	6	6		
Massi Koubou	29	29	29	30	29	
Niamey Acroport	13	13	13	13	14	
Niamey IRI	4	4	4	4	6	
Niamey ORSTOM	27	27	27	26	27	
Samadey 2	13	12	13	13		
SD Bagou	10	10	12	10		
Sandideyc	29	29	29	29		
Tanaberi	-1	-1	-1	-1	-1	
Torodi	32	32	32	32	32	
Wankama	12	12	12	12	12	
Yillade	27	26	26	27	26	

Tableau 7: Dérives de temps calculées pour chaque cartouche lors du dépouillement, rapportées à 100 jours de fonctionnement.

Kobong 301	0	0	0	1		
Kobong 302	0	lacune	0	0	0	
Kobong 303	26	26	27	26		
Kobong 304	-1	-1	-1	Ő		
Kobong 305	22	22	22	22		
Kobong 306	-1	-1	-1	-1		
Kobong 307	27	27	27	29		
Kobong 308	27	27	26	27		
Kobong 309	7	7	7	7		
Kobong 310	6	6	6	7		
Kobong 311	-4	-4	-4	-4		
Kobong 312	24	24	24	24		
Kobong 313	27	27	26	27		
Kobong 314	0	0	0			
Kobong 315	26	10	8	10		
Kobong 316	7	7	6	7		1
Kobong 317	24	24	24	24		
Kobong 318	6	6	4	6		
Kobong 319	7	7	7	7		
Kobong 320	0	0	0	O		
Kobong 321	27	27	27	27		
Kobong 322	27	27	27	Iacune		
Kobong 323	7	7	7	8	10	
Kobong 324	4	4	4	4		
Kobong 325	10	10	10	10	10	

Station	n°Epsat	période compar		cumul auget	cumul seau	delta %
		Sec. Pro-				
Alkama	43	27/03	19/10	452,0	438,0	3,2
Banizoumbou	11	01/01	17/10	lacune	lacune	
Banizoumbou sol	911	01/01	17/10	lacune	lacune	
Bazanga	5	12/04	17/10	504,5	493,5	2,2
Beri Koira	21	23/03	18/10	561,0	539,4	4,0
Berkiawel	28	28/03	19/10	548,5	545,7	0,5
Bololadie	84	16/03	24/10	573,0	570,4	0,5
Boubon	85	18/03	20/10	624,5	613,7	1,8
BrousseTigree	401	13/04	17/10	537,5	526,1	2,2
Chef de Village	268	29/03	17/10	553,0	537,0	3,0
Darey	18	28/03	18/10	560,5	545,3	2,8
Debere Gati	25	15/03	24/10	527,0	517,3	1,9
Debere Gati sol	925	15/03	24/10	lacune	524,5	
Fandou Beri	9	01/01	17/10	581,0	559,9	3,8
Gamonzon	34	20//03	20/10	408,0	413,7	-1,4
Gardama	50	31/03	16/10	494,0	516,5	-4,4
Gorou Goussa	80	25/03	16/10	516,5	492,5	4,9
Gorou Goussa sol	980	25/03	16/10	lacune	563,8	
Guilahel	49	13/03	25/10	611,0	602,4	1,4
Hama Jachere	411	13/04	17/10	549,5	536,2	2,5
Harikanassou	41	20/03	20/10	385,0	361,2	6,6
IH Jachere	105	13/03	25/10	571,5	558,4	2,3
Kaligorou	61	27/03	19/10	552,5	524,2	5,4
Kare	29	15/03	25/10	491,5	494,1	-0,5
Kokorbe Fandou	73	23/03	18/10	408,5	399,2	2,3
Kollo	54	01/01	24/10	531,5	525,7	1,1
Kollo sol	954	01/01	24/10	555,0	552,6	0,4
Koure Kobade	26	21/03	23/10	490,5	495,1	-0,9
Koure Sud	51	21/03	23/10	397,0	375,1	5,8
Koyria	82	18/03	20/10	428,0	421,2	1,6
Mali Djibo	269	29/03	17/10	533,0	505,9	5,4
Massi Koubou	78	23/03	18/10	445,0	439,7	1,2
Niamey Aeroport	94	01/01	21/01	506,5	484,6	4,5
Niamey IRI	83	01/01	21/01	lacune	501,6	
Niamey Orstom	70	01/01	21/01	541,5	536,5	0,9
Samadey 2	405	18/04	17/10	507,0	495,1	2,4
SD Bagou	410	18/04	17/10	517,0	509,9	1,4
Sandideye	57	20/03	20/10	335,5	323,1	3,8
Tanaberi	32	17/03	24/10	566,0	556,0	1,8
Torodi	86	15/03	24/10	646,0	636,0	1,6
Wankama	116	28/03	18/10	549,5	542,4	1,3
Yillade	35	21/03	23/10	455,0	442,7	2,8

Tableau 8: comparaison des valeurs totales de la saison (mm), seau et augets. delta = (augets - seau)/seau, en pour cent.

Kobong 301	301	10/04	2/10	527,5	502,8	4,9
Kobong 302	302	10/04	2/10	lacune	466,6	4.22
Kobong 303	303	6/04	2/10	498,5	479,6	3,9
Kobong 304	304	3/04	2/10	446,5	439,1	1,7
Kobong 305	305	3/04	2/10	464,0	445,3	4,2
Kobong 306	306	3/04	2/10	496,5	473,4	4,9
Kobong 307	307	4/04	2/10	500,0	488.8	2,3
Kobong 308	308	4/04	2/10	lacune	513,7	290
Kobong 309	309	5/04	2/10	517,5	507,9	1,9
Kobong 310	310	5/04	2/10	507,0	470,9	7,7
Kobong 311	311	3/04	2/10	469,5	450,5	4,2
Kobong 312	312	5/04	2/10	530,5	508,6	4,3
Kobong 313	313	5/04	2/10	519,0	497,7	4,3
Kobong 314	314	6/04	2/10	515,5	513.8	0,3
Kobong 315	315	7/04	2/10	514,0	489,9	4,9
Kobong 316	316	7/04	2/10	505,5	484,4	4,4
Kobong 317	317	7/04	2/10	530,5	505.0	5,0
Kobong 318	318	6/04	2/10	501,0	477.0	5,0
Kobong 319	319	7/04	2/10	502,0	479,9	4,6
Kobong 320	320	10/04	2/10	539,0	506,0	6,5
Kobong 321	321	7/04	2/10	484,5	461,3	5,0
Kobong 322	322	10/04	2/10	505,0	484,8	4,2
Kobong 323	323	10/04	2/10	lacune	488.6	
Kobong 324	324	6/04	2/10	467,0	446,6	4,6
Kobong 325	325	6/04	2/10	520,5	493,5	5,5

ANALYSE PRELIMINAIRE DE LA STRUCTURE DES CHAMPS PLUVIOMETRIQUES

3.1 Cumuls saisonniers

Comme pour la plupart des années, exception faite de la saison 1992, les cumuls saisonniers enregistrés sur le degré carré, pour la période de référence 15 avril-15 octobre, se répartissent selon une loi normale, de moyenne arithmétique égale à 502 mm (figure 10). Le jeu de données comprend les stations du réseau de base et du site central ainsi que la station n° 307 du site de Kobong.

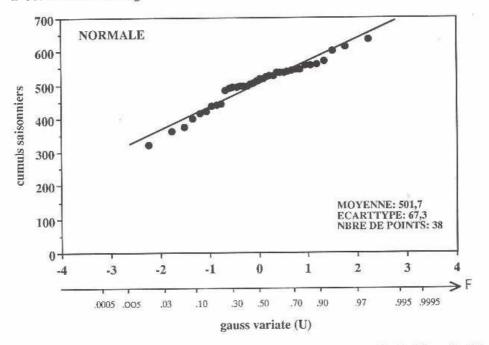


Figure 10: Ajustement d'une loi normale sur les cumuls de la période 15 avril - 15 octobre.

Le variogramme brut appliqué à ces données (figure 11) montre deux paliers. Le premier se situe vers 40 km et le second vers 120 km. Cette structure gigogne est représentative des différentes échelles de corrélation entre les stations, echelle locale et régionale (gradient nord-sud appliqué à l'Afrique de l'ouest par exemple).

La forme du variogramme a permis de caler une fonction gaussienne de pépite nulle, de coefficient de forme 23 et de palier 5200 mm². Un essai avec un variogramme puissance a aussi été effectué sur la partie du variogramme inférieure à 35 km, de.pépite nulle, de coefficients de forme 50 et 1,3. Un troisième essai a constitué à caler les valeurs par une fonction sphérique de pépite nulle, de portée 35 km et de palier 5200 mm².

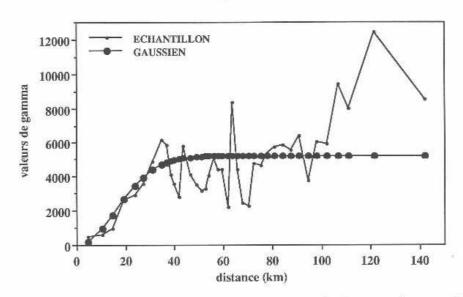
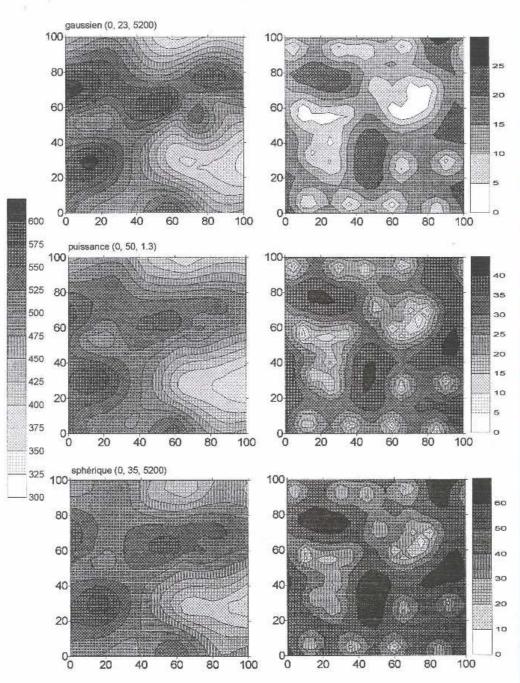
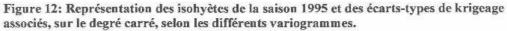


Figure 11: Fonction de structure des cumuls (15 avril-15 octobre), et essai d'ajustement par un variogramme gaussien (0, 50, 5200).


Les résultats montrent que les différents variogrammes utilisés donnent à peu près les mêmes moyennes (tableau 9), sur les différentes surfaces. L'écart-type d'estimation de krigeage se différenciant significativement en faveur du variogramme gaussien, suivi du variogramme puissance puis du sphérique.


Tableau 9 : Comparaison des moyennes saisonnières sur la zone ARCOL obtenues à partir de différents ajustements de la fonction de structure. Les ajustements sont définis par la pépite, la portée, le palier.

	gaussien (0,23, 5200)	puissance (0,50,1.3)	sphérique (0, 35, 5200)	arithmetique
degré carré	494,7	493,0	492,5	502,0
site central	513,1	519,8	521,3	501,4
site de kobong	470,1	479,5	479,6	483,0

La construction de la carte d'isohyètes à partir des 3 différents variogrammes (figure 12) montre une structure pluviométrique pratiquement identique. Par contre, les cartes des écarts-types d'estimation de krigeage associées donnent, comme pour l'écart-type de la moyenne pluviométrique sur la maille du degré carré, une meilleure estimation avec le variogramme gaussien et le variogramme puissance qu'avec le variogramme sphérique.

Pour la plupart des réseaux, la difficulté est de définir au mieux la fonction de structure aux petits pas d'espace, et la présence ou non d'une pépite. Le réseau dense du site central n'est pas suffisant pour lever les incertitudes, comme on peut le voir sur le variogramme brut où la fonction est définie seulement à partir de 4 km. Avec le réseau dense de Kobong on peut espérer connaître ce qui se passe dans le premier kilomètre et ajuster au mieux la fonction de structure (figure 13).

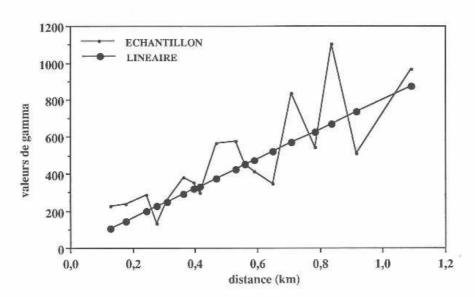


Figure 13: Ajustement d'une fonction de structure linéaire sur les cumuls saisonniers des postes du réseau du site de Kobong.

La fonction de structure qui décrit le mieux le champ saisonnier de Kobong, est un variogramme linéaire de pépite nulle ou faible, puisqu'en dessous de 125 m on n'a plus d'information. Ce résultat est à rapprocher de celui de **Carbonnel et al. (1990)**, qui dans les mêmes conditions sahéliennes, ont montré que pour une surface carrée de $100 \times 100 \text{ m}^2$, le champ pluviométrique à l'échelle de l'événement, et donc à fortiori à l'échelle de la saison, est continu.

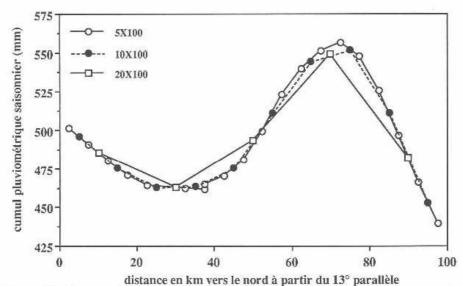


Figure 14: Moyenne des cumuls (15 avril - 15 octobre) calculée par krigeage sur des bandes latitudinales de différentes largeurs.

Le passage du variogramme de Kobong à celui du reste du réseau ne semble pas montrer de discontinuité, on peut donc penser que le variogramme de Kobong constitue le début de la partie linéaire de la courbe gaussienne. La moyenne calculée par le variogramme linéaire sur l'aire de Kobong est égal à 479,6 mm, valeur à rapprocher avec celle calculée avec le variogramme gaussien.

Cette année, le gradient nord-sud n'est pas marqué, et est même inversé sur les premiers 80 kilomètres, si l'on considère la moyenne par bande latitudinale (figure 14). De plus, On constate que le calcul du variogramme des résidus à la dérive climatologique régionale (1mm.km⁻¹) n'améliore pas le variogramme issu des données brutes.

Comme chaque année, pour vérifier la qualité de la modélisation des champs saisonniers, on a comparé par validation croisée les différents modèles d'interpolation du champ saisonnier proposés. On peut, à partir d'un échantillon comprenant la moitié des valeurs aux stations, reconstituer un autre échantillon constitué de l'autre moitié des valeurs. Les deux échantillons étant choisis sur la base d'un réseau homogène couvrant toute la zone d'étude. On prend comme critère à minimiser la somme du carré des écarts entre valeurs mesurées et valeurs reconstituées. Les deux sous-échantillons sont ensuite inversés. La procédure s'effectue en comparant plusieurs modèles d'interpolation avec ou sans dérive. Cette reconstitution a été utilisée d'une part sur le réseau total sans le site de Kobong (tableau 10) et d'autre part sur le seul réseau du site de Kobong (tableau 11).

Tableau 10: Comparaison des estimateurs de valeurs ponctuelles par reconstitution des 18 cumuls (15 avril - 15 octobre) d'un échantillon test à l'aide des 20 valeurs restantes (zone du degré carré). Moyenne des valeurs mesurées de l'échantillon test : 487,2 mm; écart-type : 75,6 mm. Moyenne des valeurs inclutes de l'échantillon servant à la reconstitution : 514,7 mm; écart-type 55,8 mm. Z^*i : valeur estimée. Toutes les valeurs sont en mm.

Estimateur	Moyenne des (Zi-Z [*] i) ²	Ecart-type des Z [*] i	Moyenne des Z [*] i
Krigeage des observations Zi			
dérive nulle		24.2	500.0
variog, gaussien : pépite = $0 \alpha = 23$	95,0	50,6	529,8
variog. sphérique : pépite = 0 portée = 35	79,0	18,4	519,6
variog, sphérique : pépite = 0 portée = 110	81,0	40,2	520,3
variog. puissance : pépite = $0 \alpha = 50 \beta = 1.3$	320,1	208,0	246,6
dérive linéaire			
variog. gaussien : pépite = $0 \alpha = 23$	92,7	49,9	528,8
variog. sphérique : pépite = 0 portée = 35	81,7	36,6	520,9
variog, sphérique : pépite = 0 portée = 110	27,9	41,5	519,2
fonction spline de type plaque mince	79,5	47,9	525,2
variog. puissance : pépite = 0 α = 50 β =1.3	319,5	207,8	247,5
Plan moyen $M(x,y) = 485 - y$	100,0	26,3	436,7
Plan moyen $M(x,y) = 514,7$	80,4	0	608,5
Plan moyen $M(x,y) = 487,2$	75,5	0	603,5

En premier lieu, on a divisé en deux l'échantillon des 38 totaux saisonniers couvrant toute la zone d'étude (seule une station du site de Kobong est conservée). Les résultats figurant au **tableau 10** montrent, que cette année, les différents interpolateurs utilisés ne reconstituent pas très bien les données. A priori le variogramme gaussien qui semblait le mieux adapté donne les reconstitutions les plus mauvaises. Il en est de même avec le plan moyen, pour ce dernier, au vu de l'absence de gradient nord-sud, on pouvait s'attendre à une mauvaise reconstitution. La reconstitution par le variogramme puissance donne aussi de très mauvais résultats car elle génère des chiffres négatifs liés à la divergence des courbes théorique et expérimentale après le 35ème km. Ce sont les deux variogrammes sphériques qui donnent donc les meilleures reconstitutions avec un des deux plans moyens constant, ce dernier résultat en concordance avec ceux des années précédentes prouve une fois de plus que les méthodes d'interpolation issues du krigeage présentent un certain nombre d'inconvénients et qu'elles sont loin de modéliser parfaitement les champs pluviométriques.

Sur la zone de Kobong, (km²), on a essayé de reconstituer les valeurs saisonnières à partir d'un échantillon de base de 25 cumuls saisonniers (tableau 11). La fonction de structure linéaire que l'on a modélisée répond le mieux au critère de reconstitution, pour une dérive nulle, avec le variogramme sphérique. Le variogramme gaussien, pour une dérive linéaire répond par contre le mieux au critère. Les deux plans moyens, comme on pouvait s'y attendre, suffisent à donner une bonne interpolation.

Tableau 11: Comparaison des estimateurs de valeurs ponctuelles par reconstitution des 12 cumuls (15 avril - 15 octobre) d'un échantillon test à l'aide des 13 valeurs restantes (zone de Kobong). Moyenne des valeurs mesurées de l'échantillon test : 483,6 mm; écart-type : 19,2 mm. Moyenne des valeurs de l'échantillon servant à la reconstitution : 482,6 mm; écart-type 23,2 mm.

Z*i : valeur estimée. Toutes les valeurs sont en mm.

Estimateur	$\begin{array}{c} {\rm Moyenne} \ des \\ ({\rm Z}_j {\rm -Z}^*_j)^2 \end{array}$	Ecart-type des Z [*] i	Moyenne des Z [*] i
Krigeage des observations Zi			
dérive nulle			
variog. gaussien : pépite = $0 \alpha = 23$	28,6	28,6	478,1
variog. sphérique : pépite = 0 portée = 35	17,9	20,6	482,0
variog. sphérique : pépite = 0 portée = 110	20,6	20,6	482.0
variog. puissance : pépite = $0 \alpha = 50 \beta = 1.3$	20,1	24,1	480,6
variog. linéaire : pépite= 0 pente=800	17,9	20,6	481,9
dérive linéaire			
variog. gaussien : pépite = $0 \alpha = 23$	28,6	35.3	478,1
variog. sphérique : pépite = 0 portée = 35	35,3	38,4	475,3
variog. sphérique : pépite = 0 portée = 110	35,3	38,4	475,3
variog. puissance : pépite = $0 \alpha = 50 \beta = 1.3$	31,7	35,5	476,3
variog. linéaire : pépite= 0 pente=800	35,3	38,4	475,3
fonction spline de type plaque mince	25,4	30,8	478,1
Plan moyen $M(x,y) = 485 - y$	56,2	0,4	430,8
Plan moyen $M(x,y) = 483,6$	19,9	Ó	483,6
Plan moyen $M(x,y) = 482,6$	19.2	0	482,6

3.2 Analyse par épisodes

Le nombre d'épisodes majeurs en 1995 se révèle être le plus faible des 6 années d'étude, selon les critères d'extension spatiale et de continuité temporelle définis précédemment (cf tableau 2). 1995 est une année légèrement déficitaire par rapport aux saisons 1990 et 1993 qui sont elle largement déficitaires. Le nombre d'épisodes majeurs étant nettement moindre en 1995, ceci remet en cause, du moins en partie, la relation trouvée les années précédentes reliant nombre d'événements majeurs et cumul pluviométrique saisonnier. Un début d'explication peut-être avancé; cette année le nombre d'épisodes de type lignes de grains et convections de mésoéchelle (au-moins 80% de stations touchées) a été très important alors que le nombre d'épisodes beaucoup plus circonscrits spatialement a été limité, le principal apport pluviométrique est donc essentiellement issu des 21 épisodes spatialement importants (65% en nombre d'événements et 83,5% du cumul total). Par comparaison, en 1993 ces événements ont représenté seulement 75% du cumul total et en nombre d'événements 63%).

L'histogramme des cumuls par épisode sur le degré carré (figure 15) montre bien que le nombre des épisodes à cumul inférieur à 10 mm en 1995 (40,5%), qui correspondent le plus souvent aux épisodes de faible étendue spatiale, est nettement inférieur à celui des autres années 1990 à 1994. Pour les années déficitaires 1991 et 1993, les épisodes à cumul inférieur à 10 mm ont représenté 61% et 58% (pour les années normales à excédentaires 1991, 1992 et 1994, 51%, 61% et 64%).

Les événements supérieurs à 10 mm se produisent à partir du milieu de saison (fin juin), au moment où les paramètres climatologiques favorisent le développement de systèmes pluviogéniques de mésoéchelle.

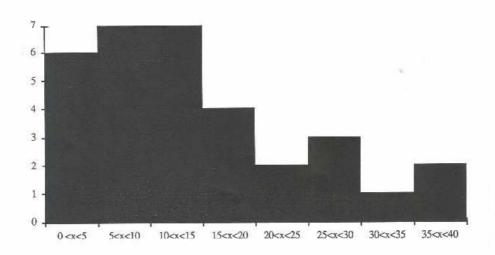


Figure 15: Histogramme du cumul des épisodes spatiaux majeurs de la saison 1995.

L'histogramme de répartition de la durée des épisodes majeurs (figure 16) confirme l'importance des systèmes de mésoéchelle particulièrement en 1995, où on ne note pas d'épisodes de courte durée, inférieure à 2 heures, caractéristique des orages locaux. Si l'on compare les durées des épisodes spatiaux de plus de 4 heures, cela représente 65% des événements cette année, comparativement les chiffres de 1991 à 1994 sont à peu près identiques entre 54 et 62%. Les événements de très longue durée (> 7 heures) sont par contre beaucoup moins importants, 2 en 1995, 11 en 1994, 5 en 1993, 7 en 1992, 3 en 1991. La durée maximale enregistrée a été de 8 h 20 (épisode du 13 août), c'est aussi le minimum des durées maximales annuelles enregistrées sur les 6 années.

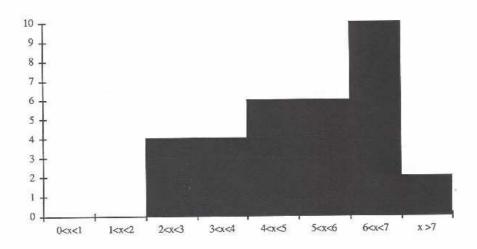


Figure 16: Histogramme de la durée des épisodes spatiaux majeurs de la saison 1995.

Pour la saison 1995, les épisodes de grande extension spatiale (au moins 80 % de stations touchées) représentent la plus grosse partie du cumul annuel (83,5 % - 412 mm). Ces événements sont au nombre de 21, (66 % des événements spatiaux), leur structure spatiale est bien définie, et comme pour les autre années, elle est représentée par un variogramme climatologique de type exponentiel (pépite 0, coefficient de forme 35, figure 17).

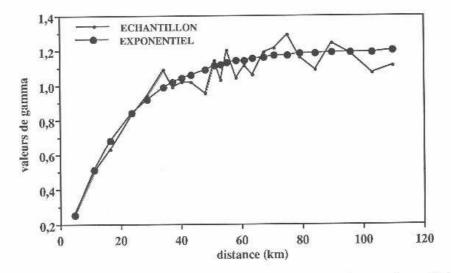


Figure 17: Variogramme climatologique des 21 épisodes de grande extension spatiale (au-moins 80% de stations en fonctionnement touchées) observés en 1995.

Le sens de déplacement des systèmes convectifs se fait en général d'est en ouest dans les régions sahéliennes. Cette année, il y a eu peu de convections isolées se formant sur le degré carré, et la saison 1995 est marquée par le passage d'événements de mésoéchelle sur le degré carré. Ceci implique que la majorité des événements ont touché une des stations en bordure du degré carré, 28 une des stations du bord est (26, 34, 43, 57, 61), 1 du bord sud (25) et 1 du bord nord (73). De même la dernière station touchée a été dans 22 cas une des stations de la bordure ouest (82, 85, 84, 86), 2 de la bordure sud (35, 29) et 2 de la bordure nord (73, 78).

La distribution fréquentielle des lames d'eau, sur le degré carré, de chacun des 32 épisodes majeurs calculés par krigeage (figure 18) s'ajuste bien, comme toutes les années, par une loi de Pearson III à 2 paramètres, dont le paramètre de forme est égal à 2,18 et le paramètre d'échelle égal à 6,96 mm.

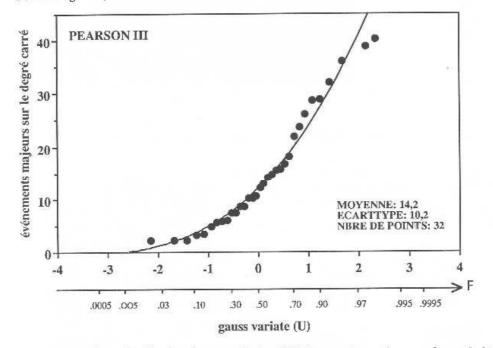


Figure 18: Loi de distribution des cumuls des 32 événements spatiaux majeurs de la saison 1995.

Par comparaison avec la loi de distribution des cumuls spatiaux, les lois d'ajustement des cumuls non seuillés des stations ayant enregistré les totaux saisonniers maximal et minimal (figure 19) sont aussi des loi de Pearson III à 2 paramètres (en fait la loi est distribuée selon les cumuls stationnels journaliers que l'on peut en premier lieu assimiler au cumul par épisode). On remarque que les paramètres de forme sont moins dissymétriques (1,05 pour Torodi et 1,21 pour Sandideye) que pour les cumuls spatiaux. L'augmentation du paramètre de forme lorsque l'on passe des cumuls ponctuels aux cumuls spatiaux correspond au lissage opéré par le calcul de la moyenne spatiale. Le paramètre d'échelle est respectivement égal à 6,63 mm pour la station de Sandideye et 13,19 mm pour la station de Torodi. On peut remarquer deux particularités cette année, d'une part le nombre de jours de pluies aux stations est particulièrement faible et d'autre part pour les 2 stations extrèmes ce nombre est pour les événements non seuillés et pratiquement même le

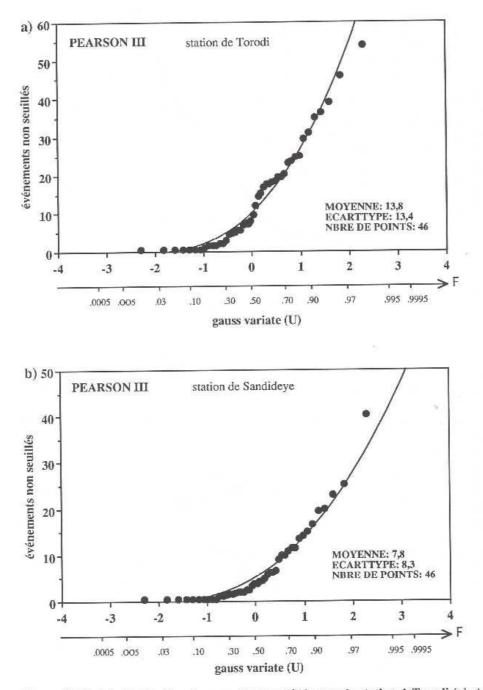


Figure 19: Loi de distribution des cumuls non seuillés pour la station deTorodi (a) et de Sandideye (b).

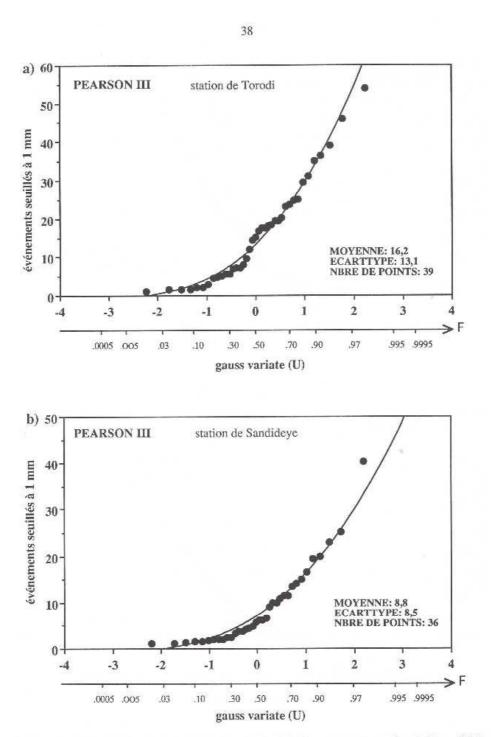


Figure 20: Loi de distribution des cumuls seuillés à 1 mm pour la station deTorodi (a) et de Sandideye (b).

identique pour les événements seuillés à 1 mm. Ces constatations sont les mêmes que celles formulées précédemment pour les cumuls spatiaux, ceci implique un nombre faible de convections locales et, on peut dire que cette année, le cumul des pluies à une station n'a pas été déterminé selon le critère du nombre d'événements mais selon le critère de la hauteur de pluie à l'intérieur de l'événement. Pour les cumuls seuillés à 1 mm (figure 20), le paramètre de forme augmente pour les deux stations, Torodi (1,56) et Sandideye (1,64) et le paramètre d'échelle diminue légèrement, 5,99 mm et 11,06 mm. Si l'on compare le nombre de jours de pluies non seuillées à 1 mm sur les 3 dernières années pour les stations à cumul saisonnier maximal et minimal, on constate effectivement que pour 1993 et 1994, le cumul est lié, du moins pour les stations extrèmes, au nombre de jours de pluies, ce qui n'est pas le cas pour la saison 1995 (tableau 12). De même, si l'on compare le nombre "d'événements" à une station (2 événements sont distincts si il s'est écoulé au moins 30 minutes sans pluie à la station, ce critère est relativement restrictif et comptabilise pour une station donnée plusieurs événements pour un événement spatial donné), les mêmes conclusions s'imposent.

Tableau 12: Comparaison du nombre de jours de pluie et du nombre d'événements pour les stations à cumul saisonnier maximal et minimal pour les années 1993 à 1995. (Le second chiffre de la colonne correspond à la hauteur moyenne par jour de pluie ou par événement).

	19	93	19	994	19	95
maxima	nb jours	nb évts	nb jours	nb évts	nb jours	nb évts
non seuillé seuillé 1,0	50 / 12,4 40 / 15,5	77/8,1 60/10,4	62 / 13,8 56 / 15,4	96/9,0 66/13,1	46 / 13,8 39 / 16,3	68/9,3 47/13,5
minima	nb jours	nb évts	nb jours	nb évts	nb jours	nb évts
non seuillé seuillé 1,0	39/8,5 33/9,8	60 / 5,4 47 / 6,9	53/9,4 41/12,1	85/5,8 52/9,6	46/7,0 36/9,9	71/4,6 44/7,3

La relation entre cumul saisonnier et nombre d'événements réellement enregistrés selon le critère de temporalité n'apparaît pas de façon particulièrement nette et est même inversée pour certain seuil.

Tableau 13: Comparaison durant la saison 1995 sur 6 stations, du nombre d'événements selon un seuil pluviométrique et le cumul pluviométrique associé. Les cumuls représentent des valeurs augets. Les stations choisies font partie de 2 transects est-ouest au sud et au nord du degré carré dont la localisation est reportée sur la figure 27.

Stations	Alkama	Gardama	Gorou Goussa	Sandideye	Koure sud	Torodi
Nbre évts non seuillés $\geq 1 \text{ mm}$ $\geq 10 \text{ mm}$ $\geq 20 \text{ mm}$ $\geq 30 \text{ mm}$	51 35 15 7 4	56 40 16 11 4	55 43 16 12 6	71 44 13 4 1	65 42 12 8 3	68 47 23 12 5
Cumul non seuillés $\geq 1 \text{ mm}$ $\geq 10 \text{ mm}$ $\geq 20 \text{ mm}$ $\geq 30 \text{ mm}$	452,0 444,0 356,0 240,0 166,5	494,0 486,0 391,5 332,0 152,5	516,5 510,5 414,0 357,5 210,0	335,5 322,0 233,0 105,0 35,5	396,5 385,0 282,5 223,0 99,5	646,0 635,5 543,0 368,0 194,0

On a calculé pour chaque station (38) sans lacunes du réseau régulier, et pour différents seuils, le nombre d'événements saisonniers et le cumul saisonnier correspondant. On a comparé les cumuls totaux avec les cumuls seuillés d'une part et, d'autre part avec le nombre d'événements seuillés. Les résultats obtenus cette année confirment ceux acquis les années antérieures. Ces 2 paramètres pouvant être considérés comme des facteurs climatologiques de la région sahélienne et cela quelque soit la qualité de la saison des pluies. Concernant la relation entre le cumul total et le nombre d'événements à différents seuils, on

peut constater qu'en général, les coefficients de détermination ne sont pas bons pour les seuils faibles, par contre les seuils compris entre 12,5 et 30 mm donnent des coefficients indiquant un lien entre les 2 paramètres (figure 21, tableau 14).

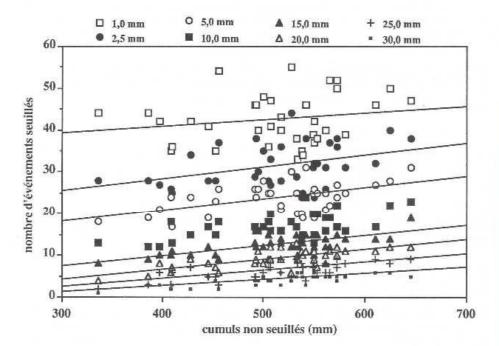


Figure 21: Corrélation entre le cumul à une station et son nombre d'événements en fonction d'un seuil pluviométrique.

Tableau 14: Coefficients de détermination de la relation nombre d'événements selon un scuil pluviométrique donné sur 38 stations en fonction de leur cumul saisonnier non seuillé.

lmm	y = 34,35 + 0,046x $r^2 = 0,03$	2,5mm	y = 17,03 + 0,028x $r^2 = 0,14$	5mm	y = 9,98 + 0,027x $r^2 = 0,26$
7,5mm	y = 6,14 + 0,027x $r^2 = 0,28$	10mm	y = -1,71 + 0,004x $r^2 = 0,15$	12,5mm	y = 1,78 + 0,024x $r^2 = 0,46$
15mm	y = -0.04 + 0.024x $r^2 = 0.56$	17,5mm	y = -2,25 + 0,026x $r^2 = 0,59$	20mm	y = -2,85 + 0,023x $r^2 = 0,53$
25mm	y = -3,37 + 0,019x $r^2 = 0,49$	30mm	y = -3,06 + 0,014x $r^2 = 0,57$	40mm	y = -4,28 + 0,012x $r^2 = 0,25$

La relation entre le cumul total et le cumul seuillé est, par contre, comme chaque année parfaitement bien établie, figure 22, tableau 15 (Taupin et al., 1993). Ce sont les pluies

importantes qui vont définir le cumul saisonnier. En effet, les pluies supérieures à 10 mm expliquent encore 92 % de la variance des cumuls saisonniers. Comme en 1992 et 1993, on constate qu'entre le seuil de 1 mm et 20 mm la pente de la corrélation reste très proche de 1, l'ordonnée décroissant progressivement de -11 à -254. De plus jusqu'à 20 mm, le coefficient de détermination reste élevé ($r^2 > 0,67$), on peut donc en conclure que sur cet intervalle, la distribution des pluies exprimées en proportion du cumul de la saison est sensiblement identique d'une station sur l'autre.

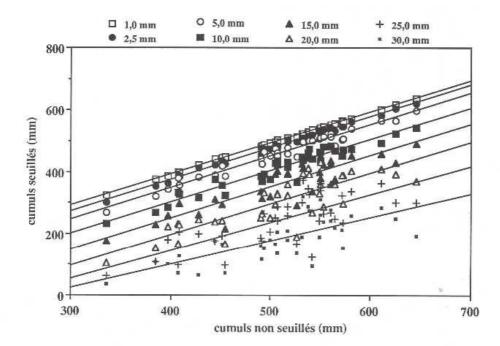


Figure 22: Corrélation entre le cumul total à une station et son cumul à différents seuils pluviométriques.

Tableau 15: Coefficients de détermination de la relation cumul saisonnier non seuillé sur 38 stations en fonction du cumul saisonnier selon un seuil pluviométrique donné.

lmm	y = -11,58 + 1,005x $r^2 = 0,99$	2,5mm	y = -33,54 + 1,017x $r^2 = 0,99$	5mm	y = -59,15 + 1,018x $r^2 = 0.96$
7,5mm	y = -84,75 + 1,025x $r^2 = 0,94$	10mm	y = -102,39 + 1,008x $r^2 = 0,92$	12,5mm	y = -131,19 + 1,011x $r^2 = 0.85$
15mm	y = -156,98 + 1,009x $r^2 = 0,78$	17,5mm	y = -193,64 + 1,032x $r^2 = 0,70$	20mm	y = -204,60 + 0,994x $r^2 = 0,67$
25mm	y = -216,97 + 0,900x $r^2 = 0,55$	30mm	y = -207,47 + 0,760x $r^2 = 0,52$	40mm	y = -247,19 + 0,696x $r^2 = 0,26$

Un condensé des résultats acquis les années antérieures permet de bien montrer la constance de ces paramètres climatiques (figure 23, 24). Si l'on prend les 4 dernières saisons des pluies, qui rassemblent 4 saisons typiques (1992: saison normale, 1993: saison fortement déficitaire, 1994: saison très excédentaire, 1995: saison légèrement déficitaire), on constate

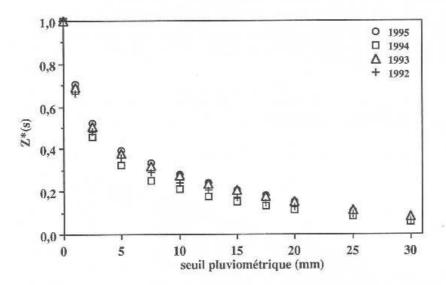


Figure 23: Répartition moyenne de $N^*(s)$ = nombre d'événements seuillés / nombre d'événements total, en fonction du seuil pluviométrique pour les années 1992 à 1995.

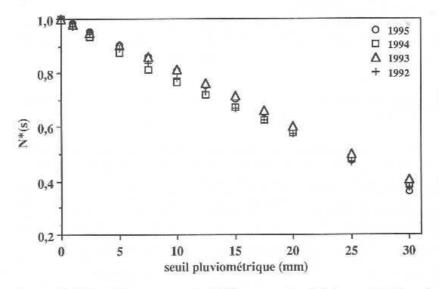


Figure 24: Répartition moyenne de $Z^*(s) = cumul seuillé / cumul total, en fonction du seuil pluviométrique pour les années 1992 à 1995.$

42

que la fréquence moyenne (calculée sur toutes les stations prises en compte) du nombre d'événements, selon un seuil donné, rapporté au nombre total d'événements sur la saison est pratiquement semblable d'une année sur l'autre. Cette courbe de fréquence obéit à une loi de type exponentielle (figure 23). Ceci implique qu'en zone sahélienne, en moyenne 50% des événements sont inférieurs à 2,5 mm, et que seulement 23% des événements sont supérieurs à 10,0 mm. De même, la fréquence moyenne du cumul selon un seuil donné rapporté au cumul total sur la saison, suit une loi linéaire identique pour ces 4 années (figure 24). Par comparaison au chiffres précédents, les pluies inférieures à 2,5 mm contribuent à seulement 5% du cumul saisonnier alors que les pluies supérieures à 10,0 mm correspondent à 80% du cumul total. De ces deux constatations, il en ressort qu'en climat sahélien, ce sont un petit nombre d'événements très pluvieux qui vont régir la qualité de la saison des pluies.

On a essayé de caractériser la saison 1995 en regardant les différences de comportement, au cours de la saison, des stations à cumul minimal et maximal.

Contrairement aux années précédentes, comme on l'a déjà montré à plusieurs reprises, la comparaison de la répartition des pluies normées (figure 25), montre que le déficit de Sandideye s'explique non pas par un nombre d'événements moindre mais par des événements dont la hauteur de pluie est moins importante qu'à Torodi. Cela s'explique de 2

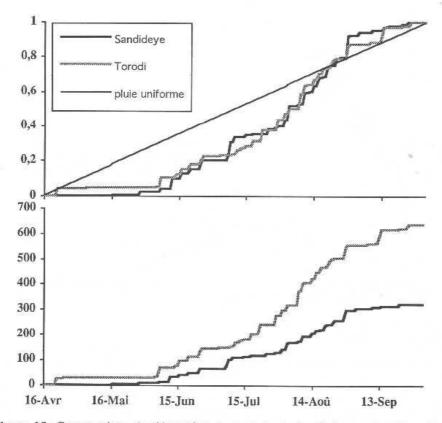


Figure 25: Comparaison de l'évolution du cumul pluviométrique entre Torodi et Sandideye entre le 15 avril et le 15 octobre: a) cumul normé et comparaison avec une pluie théorique uniforme; b) cumul non normé.

vitesse de déplacement (40-60 km.h⁻¹). Deux exemples de lignes de grain ont été choisis pour illustrer cette saison des pluies, l'événement du 11/08 et du 30/08. Outre la représentation spatiale de la ligne de grain, deux transects est-ouest de 5 stations disposés au sud et au nord du degré carré permettent de suivre l'évolution du hyétogramme stationnel (figure 27).

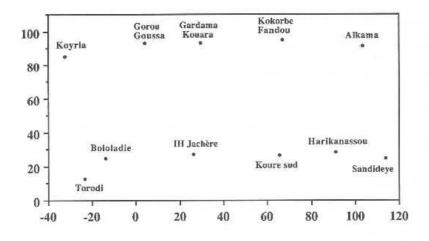


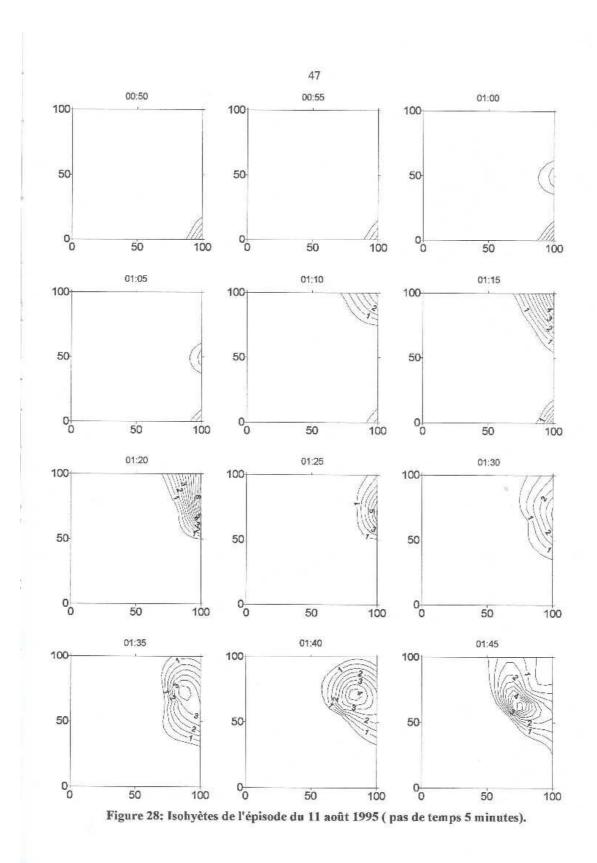
Figure 27: Localisation des stations du degré carré des deux transects utilisés pour suivre l'évolution des hyétogrammes de l'événement du 11 et du 30 aôut 1995.

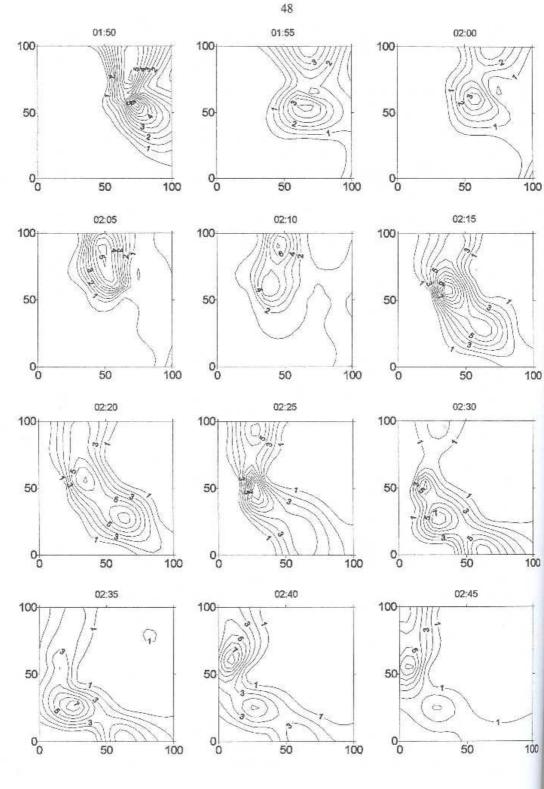
L'épisode du 11 août a donné une lame d'eau sur le degré carré de 28,7 mm, ce qui représente la 4ème hauteur de pluie moyenne enregistrée cette année. Toutes les stations du réseau ont été touchées. La convection a abordé le réseau EPSAT-Niger dans la partie nordest à la station de Koure Kobade, sa durée totale a été de 5h55 (figure 28, 29).

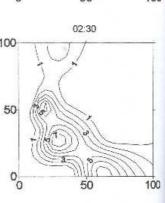
Le front a touché le degré carré à 0h50 où il reste en bordure les 20 premières minutes. La propagation se poursuit tout d'abord dans la partie nord jusqu'à 2h15, ensuite le front du nord se connecte avec des cellules plus au sud pour former un unique front sur toute la largeur du degré carré, la ligne de grain a alors une direction nord-est sud-ouest qu'elle va conserver jusqu'à la limite du degré carré qu'elle quitte à 3h25. La partie stratiforme du système, non représentée sur les cartes d'isohyètes, sera détectée par le réseau jusqu'à 6h45. Au niveau de la vitesse de déplacement du front du système, on peut noter 2 phases, une phase de stationnarité du système pendant les 40 premières minutes puis une phase de déplacement à une vitesse de 50 km.h-¹. Les hyétogrammes (pas de temps 15 minutes) sur les deux transects retracent bien le sens du déplacement du système (front et traîne) et le retard de formation au sud du front. Les intensités maximales sur les stations des transects présentent des valeurs assez élevées puisqu'elles atteignent 70 mm.h⁻¹ pour un pas de temps de 15 minutes. On constate que le hyétogramme n'est pas conservé au cours du déplacement en quantité, car il varie de 13,5 mm à 38,0 mm, et en durée, le temps de passage sur chaque station variant aussi entre 2h45 et 4h30.

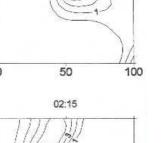
L'épisode du 30 août a donné une lame d'eau sur le degré carré de 36,0 mm, ce qui représente la 2ème hauteur de pluie moyenne enregistrée cette année. Toutes les stations du réseau ont été touchées. Cette ligne de grain est par contre un peu particulière puisqu'elle arrive après un premier système convectif de mésoéchelle qui a abordé le degré carré 3 heures avant, essentiellement dans la partie sud. Selon les critères de spatialité choisis, c'est un système unique constitué de deux fronts qui se suivent, mais on ne peut pas savoir avec certitude si physiquement c'est un système unique ou bien deux systèmes indépendants. Pour notre étude nous avons cartographié seulement le second front qui avait les

caractéristiques d'une ligne de grain. Ce front a abordé le réseau EPSAT-Niger dans la partie nord-est à la station de Koure Kobade, la durée totale de la ligne de grain avec sa traîne a été de 5h15 (figure 30, 31).

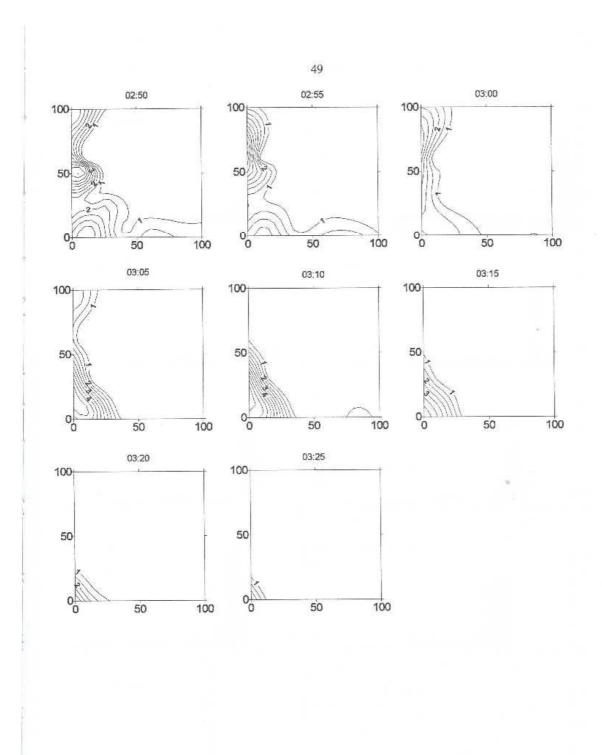

Le front a touché le degré carré le 30 août à 2h05 où il restera stationnaire pendant 15 minutes. La ligne de grain prend alors une direction franchement nord-est sud-ouest en traversant le degré carré. Le déplacement du front est rapide, entre sa position stationnaire et sa sortie du degré carré, il s'écoule environ 1h30 (75 km.h⁻¹). D'après les hyétogrammes au pas de temps de 15 minutes, la ligne s'est surtout développée au sud du degré carré (ou plus exactement le transect nord n'a pas bénéficié du passage de cellules convectives intenses, au vu de l'absence de pic d'intensité bien marqué). Les intensités maximales atteignent 40 mm.h⁻¹, ce qui n'est pas très élevé, on peut relier cela au fait que le passage d'un premier système convectif affaiblit le suivant fortement, car l'atmosphère tend à revenir à des conditions de stabilité. La quantité de pluie varie de 9,4 mm à 23,0 mm selon les stations.

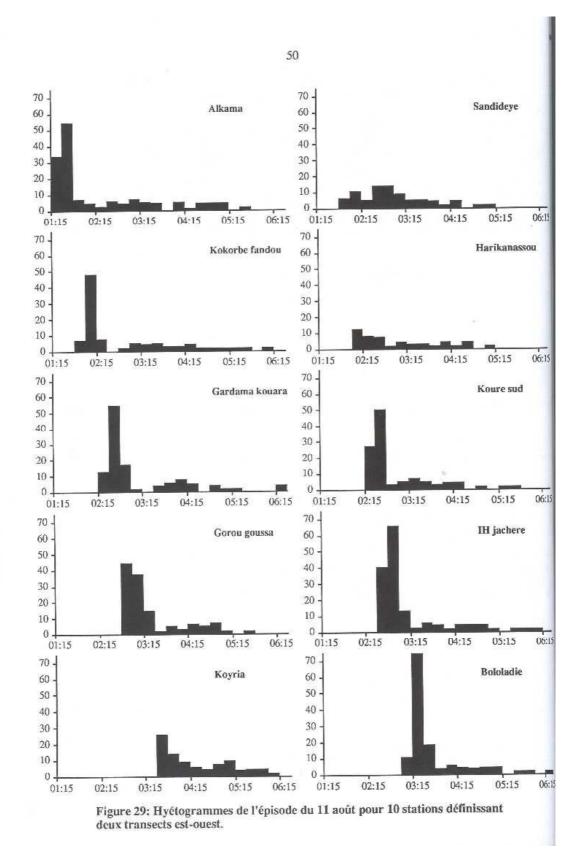

A côté des études de dynamique, le calcul des cumuls sur de petits pas de temps permet également une analyse fréquentielle. Les maximums absolus de la saison 1995 ont été calculés en compilant les cumuls maximaux de chaque épisode pour des pas de temps allant de 5 à 60 minutes à partir du tableau 2. Cette synthèse est reportée dans le **tableau 16**.


On a comparé les périodes de retour observées en 1995, à différents pas de temps, avec celles obtenues pour les années 1990-94. Les périodes de retour enregistrées en 1995 sont plus faibles ou du même ordre que pour les années antérieures, sauf au pas de temps de 15 mn où on a la période de retour la plus grande sur les six années. Cette grande variabilité des valeurs montre bien que la notion de période de retour maximale en régime sahélien n'a aucune signification réelle. On ne note pas non plus de lien entre période de retour et qualité de la saison des pluies.


Tableau 16: Périodes de retour des maximums enregistrés sur le réseau EPSAT-NIGER en 1995, calculées en prenant la série pluviographique de Niamey-Aéroport (1946-1983) comme référence. On a fait figurer entre parenthèse, les valeurs du cumul maximal et la période de retour associée pour les années 1990 à 1994.

Durée en mn	Quantité en mm	Station	Date-événement	Période de retour série Niamey-Aéroport
5	16,2 (30- 17- 29 - 15- 15)	Darey	23/08	4,6 (200- 7- 166- 4- 3)
10	31,8 (39- 31- 38- 27- 27)	Darey	23/08	38,4 (150- 28-224-11- 12)
15	43,6 (? - 41- 42- 39- 40)	Darey	23/08	53,1 (? - 33- 40- 20- 24)
30	54,0 (66- 52- 63- 60- 76)	Fandouberi	08/08	10,7 (50- 9- 30- 22- 160)
60	75,5 (75- 85- 74- 81- 109)	Fandouberi	08/08	17,5 (20- 34 -16 -25 -180)
sur l'averse	89,5 mm en 6h55' (102 - 162 - 92 - 95)	Chef de village	08/08	





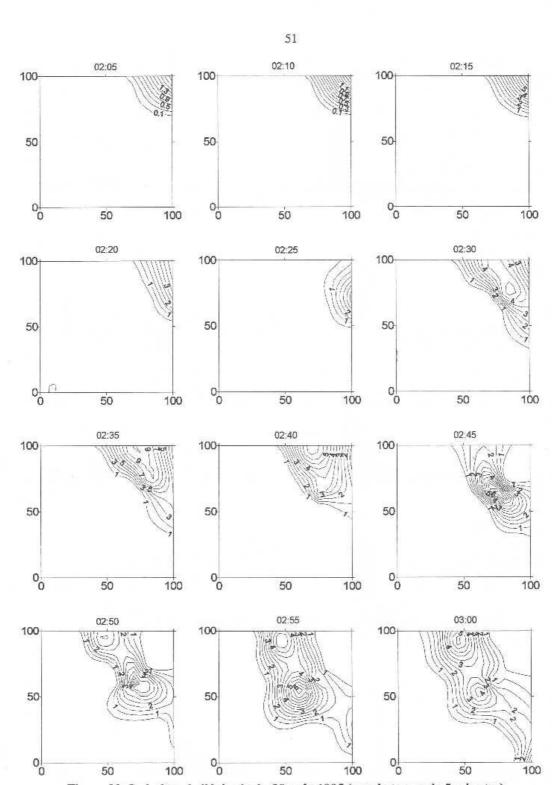
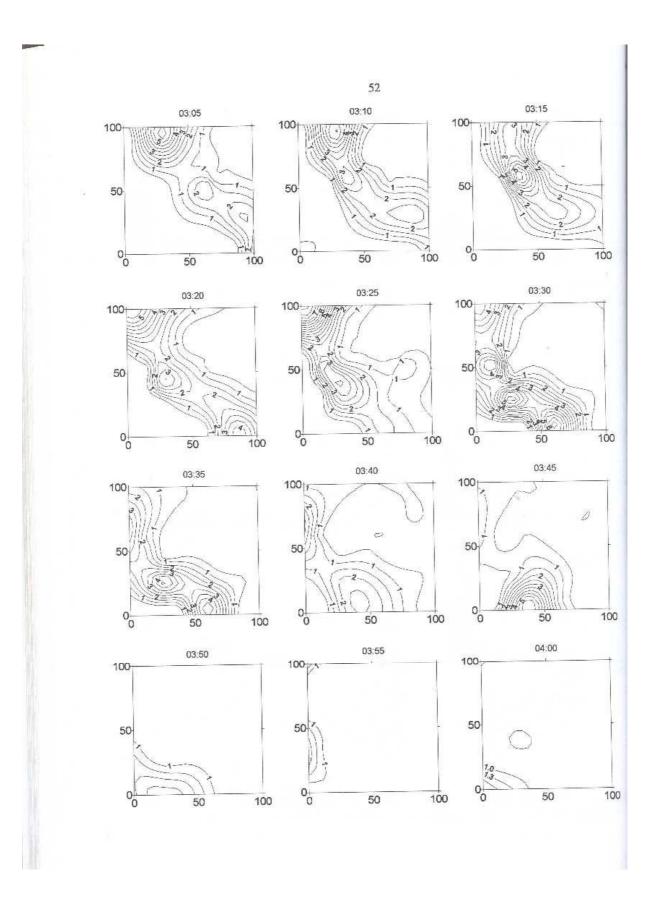
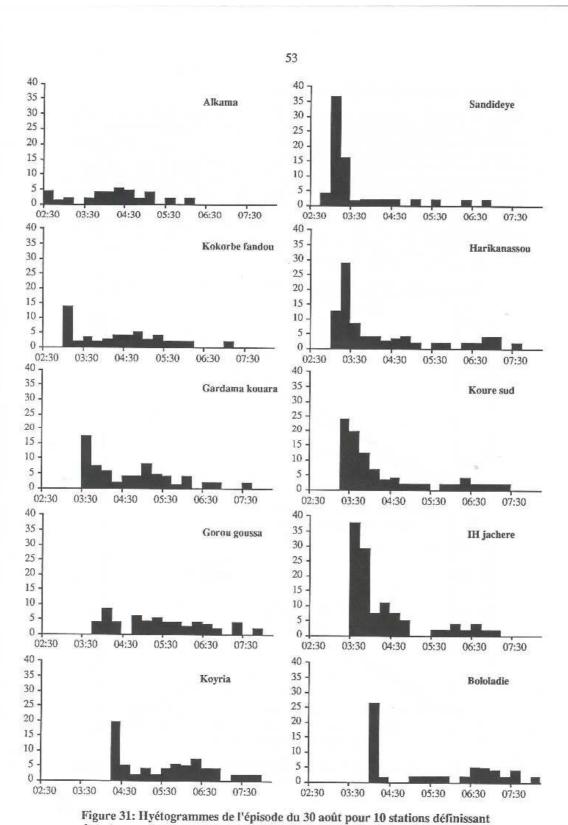




Figure 30: Isohyètes de l'épisode du 30 août 1995 (pas de temps de 5 minutes).

deux transects est-ouest.

3.4 Comparaison de la pluie à 1,50m et au sol

Comme en 1994, le dispositif de comparaison des pluies au sol et à 1,50 m du sol a été renforcé par les 2 postes au nord (Gorou Goussa) et au sud (Debere Gati) du degré carré. Vu les problèmes de submersion que l'on a subi l'an dernier avec ces deux postes, on les a redisposé sur le site dans des endroits légèrement surélevés. Le poste de Gorou Goussa a été installé sur une bande latéritique nue, très exposée au vent et celui de Debere Gati en milieu de culture sur un substratum sableux. Un espace libre de toute végétation d'au moins 10 mètres a été maintenu autour des pluviographes pendant toute la saison des pluies. Les pannes ont été peu nombreuses, dues essentiellement à l'ensablement (gorou Goussa, 16% de jours en lacune et Debere Gati, 12%) et à la foudre (Banizoumbou, 4%). Comme chaque année, on a travaillé à deux échelles de temps, au pas minimal de 5 minutes (valeurs augets non corrigées par les valeurs seau) et au pas journalier (valeurs augets sol-

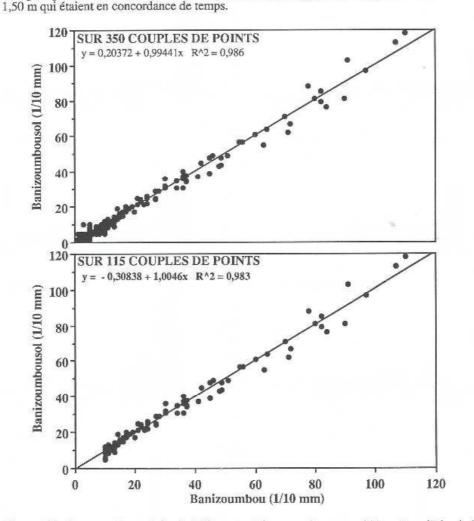


Figure 32: Comparaison pluies à 1,50 m et pluies au sol, non seuillées et seuillées à 1 mm, au pas de temps de 5 minutes, à la station de Banizoumbou.

Pour la station de banizoumbou, 350 couples de valeurs sont disponibles au pas de temps de 5 mn (figure 32). Comme pour toutes les années, le coefficient de détermination est très bon $(r^2=0.99)$ et va dans le même sens que les années précédentes, où l'on ne note pas de différence entre pluie au sol et pluie à 1,50 m (pente de 0,99). Pour s'affranchir du poids des faibles cumuls, on a, dans un deuxième temps, considéré seulement les couples dont la valeur à 1,50 m était supérieure ou égale à 1 mm. Le nombre de couples a diminué des 2/3, mais la pente ne change pas.

Les mêmes conclusions peuvent être tirées pour la station de Kollo (figure 33) et celle de Debere Gati (figure 34) où l'on obtient des pentes très proches de 1 avec ou sans seuillage.

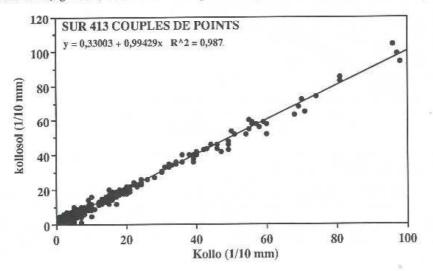


Figure 33: Comparaison pluies à 1,50 m et pluies au sol non seuillées, au pas de temps de 5 minutes, à la station de Kollo.

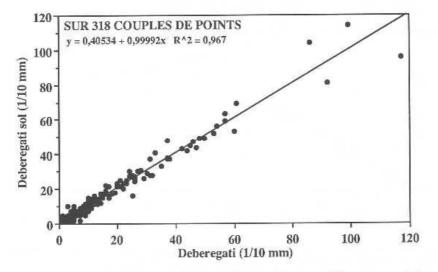


Figure 34: Comparaison pluies à 1,50 m et pluies au sol, non seuillées, au pas de temps de 5 minutes, à la station de Debere Gati.

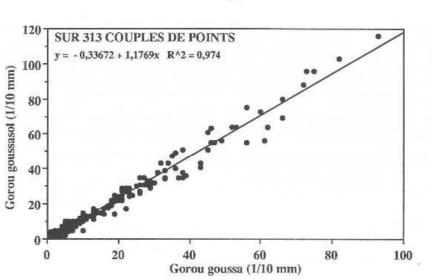


Figure 35: Comparaison pluies à 1,50 m et pluies au sol, non seuillées, au pas de temps de 5 minutes, à la station de Gorou goussa.

Seule la station de Gorou Goussa (figure 35) présente un excédent pluviométrique en faveur du pluviographe au sol (pente de 1,18 -non seuillées- et 1,22 -seuillées à 1 mm-), expliqué par la position très particulière du poste qui est soumis à des conditions de vent extrèmes et qui créent ainsi des perturbations autour du pluviomètre à 1,50 m, qui empèche un remplissage correct du cône pluviométrique.

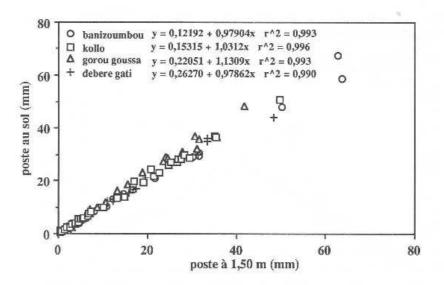


Figure 36: Comparaison pluies à 1,50 m et pluies au sol au pas de temps journalier, aux stations de Banizoumbou, Kolo, Debere Gati et Gorou Goussa.

56

Au pas de temps journalier (figure 36), pour les stations en zone de culture, le coefficient varie légèrement mais reste toujours près de 1 (entre 0,97 et 1,03). Pour la station de Gorou Goussa, son coefficient reste toujours en faveur de la pluie au sol, pente de 1,14, mais baisse quand même fortement, on retrouve d'ailleurs un coefficient peu éloigné de celui déterminé, pour une latitude identique, par Chevallier et Lapetite (1986).

Le tableau 17 résume les résultats, au pas de temps journalier, obtenus sur les quatre sites depuis le début de l'expérimentation. Ces données mettent en évidence, que sur trois des sites qui sont en culture, il n'y a pas véritablement de différence entre le pluviographe au sol et le pluviographe à 1,50 m, que cela soit au niveau journalier ou au pas de temps de 5 mn. Pour la station de banizoumbou, on enregistre même systématiquement un léger excédent en faveur du pluviographe à 1,50 m. C'est un résultat intéressant car toutes les études faites auparavant insistaient sur un excédent important et systématique au niveau du pluviographe au sol. Il n'est pas impossible que l'effet de turbulence étant atténué en zone de culture, on arrive à cette uniformité des données. En ce qui concerne la station de Gorou Goussa, l'écart entre pluviographe au sol et à 1,50 m est parfaitement marqué, les conditions de vent influençant sans aucun doute la répartition des pluies au sol et à 1,50 m.

non de végétation va intervenir sur le fractionnement sol-1,50 m, mais aussi le type de système précipitant, convectif ou non, qui doit aussi largement influencer ce processus de distribution des pluies entre le sol et 1,50.

Tableau 17: Comparaison des relations pluviographe à 1,5 m et au sol, obtenues sur les sites de Kollo, Banizoumbou et Niamey entre 1990 et 1995, au pas journalier.

	Nombre de couples	А	В	r2
BANIZOUMBOU				
1991 1992 1993 1994 1995	16 32 33 51 28	0,996 0,982 1,000 0,947 0,979	0,356 0,198 -0,186 0,382 0,263	0,999 0,995 0,996 0,995 0,993
KOLLO				
1990 1991 1992 1993 1994 1995	16 23 40 40 55 40	0,981 1,017 1,004 0,946 1,012 1,031	-0,171 -0,306 0,119 0,463 0,180 0,153	0,995 0,985 0,994 0,992 0,998 0,996
DEBERE GATI				
1994 1995	38 33	1,062 0,978	-0,269 0,263	0,994 0,990
GOROU GOUSSA				
1994 1995	32 31	1,141 1,131	0,235 0,220	0,994 0,993

CONCLUSIONS

4

Après une année pluviométrique exceptionnelle (1994), la saison des pluies 1995 a été légèrement déficitaire par rapport à la période 1968-94. Elle est caractérisée par un retard important des premières pluies, un rattrapage partiel sur le mois d'août et un arrêt précoce de l'hivernage fin septembre. Les caractéristiques de la climatologie sahélienne sont, cette année une fois de plus, mises en évidence:

- grande hétérogénéité spatiale à tous les pas de temps,

- inversion importante, au niveau local et même régional, du gradient climatologique de grande échelle,

présence d'une petite sécheresse intra-saisonnière au mois de juillet.

On dispose maintenant de 6 années de données de qualité, moyennes (1990-91) à bonnes (92 à 95), qui représentent différents types de saison et qui devraient permettre une meilleure compréhension des sytèmes pluviogéniques en région sahélienne pour aider à la modélisation des précipitations sous ce type de climat.

Les investigations, à partir des données sol, radar et satellitaires, ont déjà porté sur différents thèmes que l'on poursuivra ces prochaines années:

- caractérisation et classification des champs pluvieux à toutes les échelles de temps et d'espace,

- caractérisation d'une climatologie des données sol à partir d'indices simples comme les fréquences d'intensité, les seuils pluviométriques, la structure des événements en fonction de leur extension spatiale,

- validation des estimations satellitaires infrarouge, et optimisation des erreurs d'estimation surfacique des pluies à partir du réseau sol.

- application des résultats dans des modèles hydrologiques régionaux.

Outre les études de modélisation à grande échelle en zone sahélienne, l'expérience EPSAT-Niger a fait l'objet de recherches très localisées sur différents processus qui n'avaient jamais été étudiés ou avaient fait l'objet de travaux sur de très courtes durées :

C'est le cas pour les expériences sur:

- la comparaison de la hauteur de pluie entre le pluviographe au sol, et celui à 1,50 m, où les résultats montrent, à long terme, que l'environnement naturel joue un rôle prédominant dans cette répartition. On a pu constater ainsi avec certitude que l'écart sol-1,50 m n'était pas toujours en faveur du pluviographe au sol,

- le réseau de Kobong qui approche l'étude de la variabilité à petit pas d'espace. Ce travail, très prometteur, en est à ses débuts et devrait permettre de travailler au niveau de la cellule convective de base (de l'ordre de grandeur du kilomètre) et d'approcher ainsi les mécanismes de sa naissance, de son déplacement et de sa disparition. L'étude du variogramme à toutes les échelles de temps aidera aussi à une meilleure modélisation du système convectif (présence ou non d'une pépite).

La saison 1995 est la dernière campagne impliquant un dispositif expérimental important.

A partir de 1996, l'Orstom se désengagera progressivement au profit du personnel de la Direction de la Météorologie du Niger (DMN). Il sera maintenu un réseau minimum d'une vingtaine de postes pluviographiques selon les moyens dont on disposera. Le maintien d'un tel réseau pluviographique minimum sur la zone du degré carré de Niarney devrait permettre d'avoir un observatoire dans la région sahélienne au moins jusqu'en l'an 2000. D'autre part, cela devrait faciliter le choix du degré carré comme site de validation pour l'Afrique sahélienne du futur satellite défilant TRMM qui sera équipé d'un capteur micro-onde et dont le lancement est prévu en 1997.

REFERENCES

Bouvier, C., 1986: Etude du ruissellement urbain à Niamey, tome 3, Interprétation des données. Rapport général de convention ORSTOM/ MRH-DRE/ CIEH, 106p.

Carbonnel J.P., Hubert P., Walbadet E., Mermoud A.et Bariac T., 1990: Variabilité spatiale des précipitations soudano-sahéliennes à l'échelle décamétrique. C.R.Acad. Sci. Paris, t. 311, Série II, p.1425-1430.

Chevallier P. et Lapetite J.M., 1986: Note sur les écarts de mesure observés entre les pluviomètres standards et les pluviomètres au sol en Afrique de l'Ouest. Hydrologie continentale, 1/2, p. 111-119.

Goutorbe J.P., T. Lebel, A. Tinga, P. Bessemoulin, J. Brouwer, H. Dolman, E.T. Engman, J.H.C. Gash, M. Hoepffner, P. Kabat, Y.H. Kerr, B. Monteny, S. Prince, F. Saïd, P. Sellers, J. Wallace, 1994: HAPEX-SAHEL: a large-scale study of land-atmosphere interactions in the semi-arid tropics. Annales Geophysicae 12, p 53-64.

Lebel T., F. Cazenave, R. Gathelier, M. Gréard, R. Gualde, J. Kong, T. Valero, 1991: EPSAT-NIGER, Rapport de campagne 1990, ORSTOM-DMN, 65p.

Simpson J., Adler, R.F. and North G.R., 1988: A proposed Tropical Measuring Mission (TRMM) satellite. Bull. Am. Met. Soc. 69, p. 278-295.

Taupin J.D., A. Amani and T. Lebel, 1993: Small scale spatial variability of the annual rainfall in the Sahel in: Bolle H.- J., Feddes, R.A. and Kalma, J. (Editors). Exchange Processes at the Land Surface for a Range of Space and Time Scales (Proceedings of the Yokohama.Symposium, july 1993). IAHS Publ. N° 212, p. 563-602.

Taupin J.D., T. Lebel, F. Cazenave, F. Chiron, R. Gathelier, M. Gréard, R. Gualde, J. Kong, T. Valero, 1992: EPSAT-NIGER, Rapport de campagne 1991, ORSTOM-DMN, 82p.

Taupin J.D., T. Lebel, F. Cazenave, M. Gréard, J. Kong, J. Lecocq, M. Adamson, N. d'Amato, A. Ben Mohamed, 1993: EPSAT-NIGER, Rapport de campagne 1992, ORSTOM-DMN, 91p.

Taupin J.D., E. Bonef, M. Gréard, O. Ponseel, 1995: EPSAT-NIGER-ARCOL, Rapport de campagne 1993, ORSTOM-DMN, 101 p.

Taupin J.D., E. Bonef, J. Robin, 1995: EPSAT-NIGER- Suivi à long terme, Rapport de campagne 1994, ORSTOM-DMN, 81 p.

ANNEXE 1. GESTION DU RESEAU DE PLUVIOGRAPHES ET INVENTAIRE DES PANNES

Coût de fonctionnement de la campagne 95

Chapitre 690

-Petit matériel (réinstallation-installation)	1.000 FF
- Batteries et régulateurs	4.000 FF
- Carburant-Essence-Gasoil-Huile	30.000 FF
- Déplacement personnel local (250 jours de tournées)	12.000 FF
- Photocopie-papetterie-disquette-téléphone	5.000 FF
- Maintenance informatique	10.000 FF
Total	62.000 FF
Chapitre 644	

Gardiennage des stations

25.000 FF

Au cours de la saison 95, les équipes de terrain ont effectué 250 jours de tournées pour les réinstallations, les nouvelles installations, les visites de contrôle et d'entretien, et le démontage des stations, ce qui représente 50.000 km.

Les réinstallations ont débuté le 13-03-1995 (GUILAHEL),
La fin du démontage a eu lieu le 25-10-1995 (GUILAHEL).

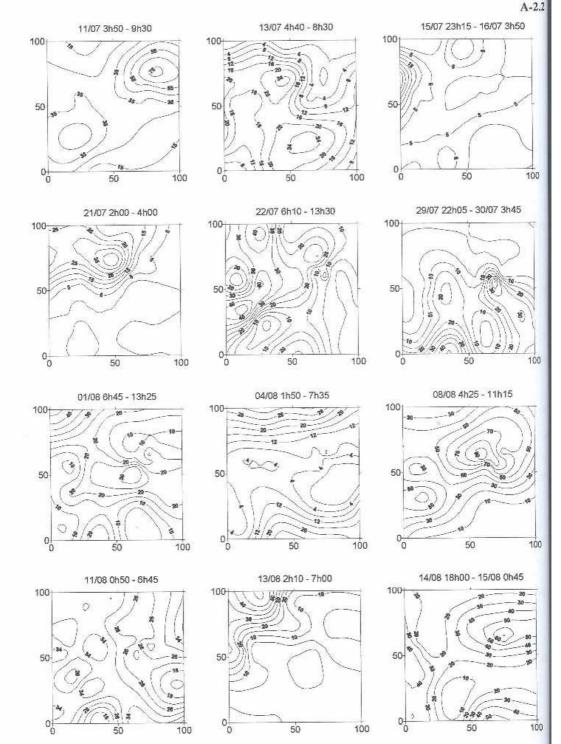
Jours de fonctionnement des stations : du 1 avril au jour de son démontage.

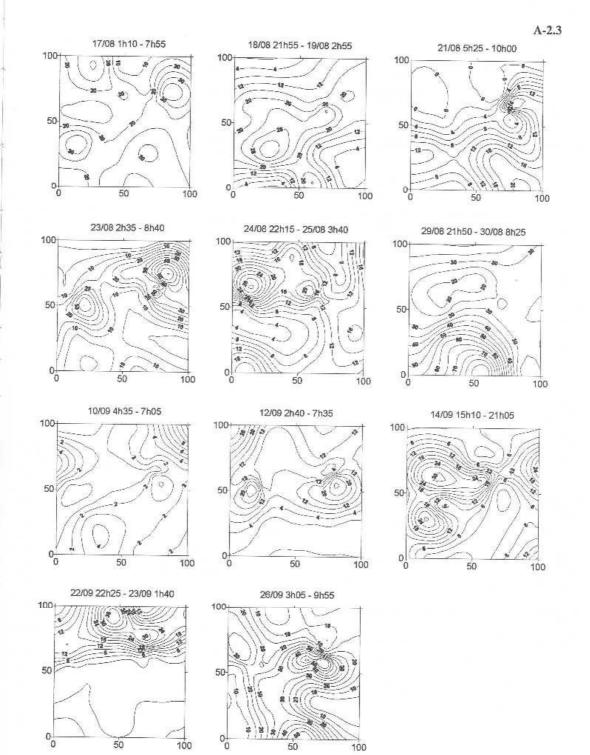
Jours de fonctionnement	12937
Jours de panne	137
Jours d'enregistrement	12800

Causes des pannes en détail

entonnoir bouché	3
augets bloqués	66
Alimentation	
batterie et régulateur	35
Enregistreur	
œdipe défectueux	10
cartouche défectueuse	23
Total	137

Causes des pannes	Nombre de jours	% des pannes	
Pluvio	69	50	
Alimentation	35	26	
Enregistreur	33	24	


A-1.2


Tableau	A-1.1: Jours	de	fonctionnement	et	causes	de pannes.

Station	Jours	Jours	Jours	%Jours	CAUSES PANNES
	fonctionnement	pannes	enregistrés	pannes	
Alkama	206	0	206	0,0	
Banizoumbou	199	8	191	4.0	pb électrique causé par la foudre
Banizoumbou sol	199	8	191	4,0	pb électrique causé par la foudre
Bazanga	187	0	187	0.0	po ciccurque cause par la toutile
Beri Koira	209	Ő	209	0,0	
Berkiawel	205	0	205	3,9	
Bololadie	222	0	222	0,0	
Boubon	216	õ	216	0.0	
BrousseTigree	186	ŏ	186	0,0	1
Chef de Village	202	0	202	0,0	
Darey	204	0	204	0,0	
Debere Gati	223	0	223	0.0	
Debere Gati sol	223	27	196	12,1	augets bloqués
Fandou Beri	199	0	199	0.0	
Gamonzon	214	0	214	0,0	
Gardama	199	õ	199	0,0	
Gorou Goussa	205	0	205	0,0	
Gorou Goussa sol	205	32	173	15,6	augets bloqués
Guilahel	226	0	226	0.0	Landara crostran
Hama Jachere	188	0	188	0,0	
Harikanassou	214	0	214	0,0	
IH Jachere	226	0	226	5,3	
Kaligorou	206	0	206	6,0	
Kare	224	0	224	0,5	
Kokorbe Fandou	209	0	209	0,0	
Kollo	206	0	206	0,0	
Kollo sol	206	0	206	0,0	
Koure Kobade	216	0	216	0,0	
Koure Sud	216	0	216	0,0	
Koyria	216	0	216	0,0	
Mali Djibo	202	0	202	0,0	
Massi Koubou	209	0	209	0,0	
Niamey Acroport	203	0	203	0,0	
Niamey IRI	203	3	200	1,5	entonnoir bouché
Niamey Orstom	203	0	203	0,0	
Samadey 2	182	0	182	0,0	
SD Bagou	182	0	182	0,0	
Sandideye	214	0	214	0,0	
Fanaberi	220	0	220	0,0	
Forodi	223	0	223	0,0	
Wankama	204	0	204	0,0	
rillade	216	0	216	0,0	

A-14

Kobong 301	165	0	165	0,0	
Kobong 302	165	23	142	13,9	cartouche défectueuse
Kobong 303	169	0	169	0,0	
Kobong 304	172	0	172		
Kobong 305	172	0	172	0,0	
Kobong 306	172	0	172	0,0	
Kobong 307	171	0	171	0,0	
Kobong 308	171	7 0 0	164	4,1	augets bloqués
Kobong 309	170	0	170	0,0	
Kobong 310	170	0	170	0,0	
Kobong 311	172	0	172	0,0	
Kobong 312	170	0	170	0,0	
Kobong 313	170	0	170	0,0	
Kobong 314	169	19	150	11,2	batterie défectucuse
Kobong 315	168	0	168	0,0	
Kobong 316	168	0	168	0,0	5 C
Kobong 317	168	0	168	0,0	
Kobong 318	169		169	0,0	
Kobong 319	168	0	168	0,0	
Kobong 320	165	0	165 .	0,0	
Kobong 321	168	0	168	0,0	
Kobong 322	165	0	165	0,0	
Kobong 323	165	10	155	6,1	oedipe défectueux
Kobong 324	169	0	169	0,0	
Kobong 325	169	0	169	0,0	

ANNEXE 3. TABLEAUX DE CUMULS JOURNALIERS

.

Station : Banizoumbou

Pluies journalières corrigées par les valeurs seau (de 6 h a 6 h) en 1/10 mm

en 1995

Jour	Jan	Fev	Mars	Avr	Ma	1 	Juin	Juil	Aout	Sept	Oct		Nov
. 1 .		*	×	(a)					95.	5.			
. 2 .		61	ά.	1.02								÷.	
. 3 .		•	*	5.			a.		70.			- iii	
• 4 •		•	*									1	
· ? ·		3 9 3			÷.							- C	
6.													-
7.							21.		636.				
8,		(*)		3 6		្ន		122.	168.				
9.		1198							(Alexandra)			÷.	
10 .				e				316.	317.	- 24.			
.11 .				1.0				63.		48.			-
12 .			*	38		4	28,	15.	70.				
13 .								5.		- P .			
14 .			1 .2		1.00		5.	0	503.	29.			
15 .												8	
16 .				•					216.			- C	
17 .				•				3				- S-	
18 .								5.	302.			- 1	
19 .										2 0			_
20 .		*					109.			20			
21 .		36 C							45.				
22 .				÷.				80.					
23 .		a							'	.0	1-12-12-12-12	•	
24 .			2 .										
25 .		*	240		à		214.			628.	1000000	0.0	
26 .		*								20.			
27 .							8			20.		•	
28 .					ŝ.		<i>.</i>						
29 .			D-0.0 - #	22	2	4.		146 (236).	×			
30 .		. ^^^^			5				10.				
31 .			·^.							^^^^.			
Cum.			,		•	4.	377.	752.	2668.	754.			
Max.		+				4.	214.	316.	636.	628.			

Total sur la periode de fonctionnement = 4555

Pluies journalières corrigées par les valeurs seau (de 6 h a 6 h) en 1/10 mm

Station : Niamey Aeroport en 1995

Tour	Jan	Fe	v Mars	2	vr	Mai	Juin	Juil	Aout	Sept	Oct		Nov
. 1									90.			÷	
2		1040				-						•	
		1.00						•	33.				
4			*						5.	-		¥7	
5					1.40	29.		-		•			
6									-	34.			
7	50) 200						9.					$\hat{\mathbf{w}}$	
. 8	80) 20							125.	295.		5		
. 9								10.					
.10	50 					5.		100.	289.			٠	
.11								208.	5.	270.			
.12		2						*	10.			\mathbf{x}	
.13	54 C				2			128.					
.14		28 •	2				203.	2	140.	237.			
.15		.						52.					
.16		1 7		•	27.		106.		116.				
			•						5.				
.17				•	•				212.				
.18				100	2		·						
				10.00			120.	48.				1	
.20				885					14.	53.			
.21			2 7	1	5.		14.	252.					
.22				1.	5.		11.		33.				
	•	٠	1. The second se	7	•		1 I		174.				
.24		18	1011		128.		332.			000			
.25	•		3 .	- 1	120.	•	332.			39.		- 12	
.26				*									
.27	8 38		3. C.	٥	-			43.					
	s: 11			•			•	57.		a 🖷			
.29						•	19.		1200			•	
.30		.^^^	· · · · ·	٠.					54.			1	
.31		.^^/	·^^.	.^				-					
. Cum			10		160.	34.	803.	1023.	1977.	851.		•	
.Max					128.	29.	332.	252.	348.	270.			

Total sur la periode de fonctionnement = 4848

Pluies journalières corrigées par les valeurs seau (de 6 h a 6 h) en 1/10 mm

Jour	Jan	Fev	Mars	A	vr	Mai	Juin	Juil	Aout	Sept	Oct		No
. 1									105.	•			
. 2	•								5.			٠	
10 - 12 <u>2</u> 6		2							47.				-
100	20. •	2					5.		5.	5.			-
5	52 •	<u>.</u>			÷	30.	¥.						
	8 •	Q		2		2.0				35.			
. 7	Ş	<u>.</u>				٥	5.					(\mathbf{r})	
. 8		2		•			×	129.	270.	-	*		
. 9	2						. ().	5.				
	2	2					. ().	342.	5.			
.11	<u>.</u>	2	1991				- (416).	5.	120.			
	<u>.</u>	÷.							233.	10.		•	
	<u>.</u>	2						135.				- 21	
.14							244.	. 9	317.	215.			
.15	S							85.	-				
.16	ĝ.				10.		273.		119.	35.			
.17						a.				5.		-	
No. 12 Your	2							5.	188.	5.			
.19	<u> </u>		2				20						
.20	<u> </u>		23				234.	85.		-			
.21	<u> </u>							0		95.			
. 22	2	100					163.	115.					
.23	2	100							43.	a		-	
.24			2			Sr.	•		134.	a			
.25		100					115.			145.			
.26						25.				30.			
.27													
.28		1040				×	1.001	31.					
.29			AA.					16.	174.				
.30									53.			2	
.31				. ^.			······		•	· · · · · ·		•	~~^
.Cur	n.			•	10.	55.	1039.	1017.	2166.	730.			
.Max	·				10.	30.	273.	135.	342.	215.			

Total sur la periode de fonctionnement = 5017

Pluies journalières corrigées par les valeurs seau (de 6 h a 6 h) en 1/10 mm

Station : Niamey ORSTOM en 1995

Jour	Jan	Fev	Mars		Avr	Mai	Juin	Juil	Aout	Sept	Oct		Nov
. 1 .		•	•	•	•		24.		96.				
. 2 .						•							
. 3 .			÷2			-			35.				
. 4 .				<u>а</u>			5.		5.				
5.		(a)	12			9.	5.						
6.										65.			
7.												1.000	
8.					340 C			219.	365.			0.50	-
9.		(H)	•					5.	5.			1071	
10 .					2 m	- 20		140.	300.	20.		0.50	
11 .								192.		100.		6570	
12 .									155.	10.			
13 .			10					168.		20.			
14 .		*		*			202.		205.	261.			
15 .						5.		89.		DOT.			
16 .					38.		202.		130.			•	
17 .									10.	20.		•	
18 .		*		20 20	22	1420		5.	219.	201		•	-
19 .				22								•	-
20 .				20			200.	129.				•	22112
21 .										216.		1.5	
22 .		×		20			122.	124	49.	85.			
23 .								2210	56.	05.		•	-
24 .				2				5	249.	•	111000	. */	
25 .							117.	ð	247.	273.		•	
26 .				20		10820			•	275.		•	
27 .		*				:: * *//	*** ***		•	25.		•	
28 .			2000 A.				*** 20.	172.				•	
29 .			^.			-		30.	167.				
30 .		-	^.			•			48.			•	
31 .			~	•	^^^^	•		14				•	
						•			•	·		· ·	~~~
Cum.			•	•	38.	14.	877.	1273.	2094.	1075.			
Max.					38.	9.	202.	219.	365.	273.			

Total sur la periode de fonctionnement = 5371

A-3.5

Jour		Jan		Fev	P	lars		Avr	Mai	L	Juin	Juil	Aout	Sept	Oct		No
. 1 .									•				116.				
. 2 .																	
. 3 .													252.	58.			-
4 .													10.				
5	2								•				5.				
6	2		÷.											5.			
. 7	2										44.	109.	19,				
8									*			230.	19.			٠	
. 9	2		÷.											24.			2757
10000	2					-						91.	199.	5.			
	e 											5.	5.	54 (Sa			-
12.82	2		÷.						2		194.	5.	10.				
					100									5.			-
	20. 20.												116.	48.			777
					_				1	17.		38.	· · · · · · · · · · · ·				-
	*: -						2				99.		141.	24.			
.17	÷.				<u></u>	and the second s	- 2		92 • •			-		್ಷ		4	
	*: 2											14.	19.				25
- 1202 V	2						- 20						4			*	
100	2						- 22				66.		151.				
19202-0	÷.	_			a		100				-		63.				
	20		18				-							43.			
	*				. *		਼			1			5.				
	٠			NUMBER 0			- 8			2			136.	100			
	۲			-			ੰ			ē	165.	100.		38.			
.26	٠	autoreautor		(2		1				5.		5.				
					9		1		•	1							
	*		٠		- 7		•					15.					
100000	×.		- 25	~~~~	<u>م</u> "		1		÷.	63.		34.					
.29	2			****						05.			15.				
.30	1			~~~~	- 62		•	*****				20 *					
.31	1		•														
.Cum	۱.				•				•	80.	573.	641.	1689.	250.			
.Max					-					63.	194.	230.	403.	58.			

Pluies journalières corrigées par les valeurs seau (de 6 h a 6 h) en 1/10 mm

Total sur la periode de fonctionnement = 3233

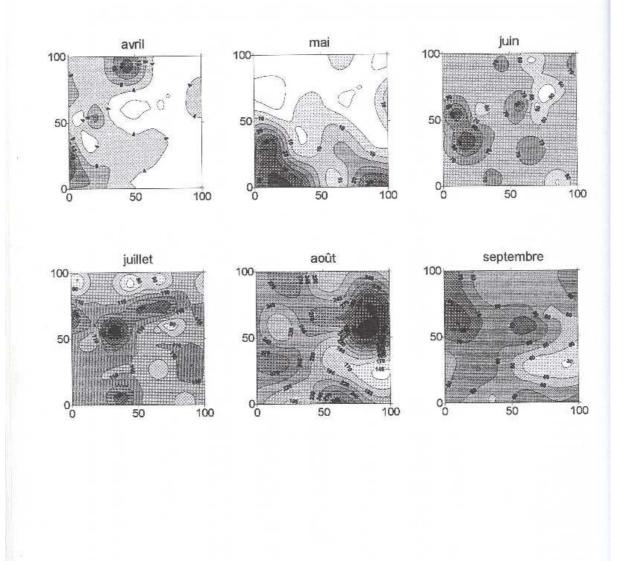
Pluies journalières corrigées par les valeurs seau (de 6 h a 6 h) en 1/10 mm

Dederon . TOTOUT	Station	:	Torodi
------------------	---------	---	--------

en 1995

Jour		Jan		Fev		Mars	0.837	Avr	Mai	Juin	Juil	Aout	Sept	Oct	Nov
. 1							2					230.			
. 2		-													-
. 3	40			-						•		105		20.	-
. 4	2					-	3				40	195.	4		
. 5			- 2					•	15.	20	49.	5.			
. 6	20						•	•	12.	29.	۰	•	¥	-	
. 7				and the second			*							-	
. 8		_						•		351.					
9	•		٠				•	•	•			540.	55.		-
2	•				٠		•		•		20.				-
	20				٠	_	٠		10.	1.00		310.	5.		-
	•				٠	The set land		•			166.	15,			
	1		•										15.		
10112 - 11	e)		53		×						73.		235.	•	
	e)				٠					96.	1011000320	174.	295.		0000000
15 .							4				73.		435.		2010-040
	÷,							5.		202.		249.			
17 .							÷					242,			
18 .					$\hat{\varphi}$						181.	184.		1	
19 .					23									•	
20 .					23		÷.			152.	•				
21 .					48					102.			1.0		
22 .					-23		5	248.			200	80.			
5 <u>0</u> 21023 - 113								10.235		100	390.	174.	45.		
24 .					÷.			•		1	(3 4 5)	70.		8 7	
					•			-	•			50.			
26 .			•		*		•	5.		193.					
27 .								5.	5.	119.			144.		
22					•					5.					
					a							•			
			100		•						365.	458.			
				~~~~			۰	· · · · · · · · · · · · · · · · · · ·				55.			
31 .	_		•		•		• ^	· · · · ·	.^	^^^^.		.^	^^^^.	/	~~~~
Cum.	_		•				•	263.	30.	1147.	1317.	2789.	794.	20.	
Max.								248.	15.	351.	390.	540.	295.	20.	

Total sur la periode de fonctionnement = 6360


A-3.6

ANNEXE 4.	
CUMULS MENSUELS	

Tableau A-4.1: Cumuls mensuels enregistrés aux 38 stations du réseau de base + site central (cône de réception 1,50 m au-dessus du sol) et 11 stations du réseau de Kobong, pour les mois d'avril à octobre 1995.

Station	n° epsat	avril	mai	juin	juillet	août	septembre	octobre
Alkama	43	1,0	0.4	76,3	79,7	205.6	75,2	0.0
Banizoumbou	11	0,0	0,4	37,7	75,2	lacune	75,4	0,0
Bazanga Bangou	5	1,5	4.6	67.7	94,9	257.9	67,3	0,0
Beri Koira	21	1,7	4.2	66,7	137.3	272.6	57,3	0,0
Berkiawel	28	0.0	6,5	58,1	166.3	244.1	70,5	0.0
Bololadie	84	44.0	2,9	75,7	140,9	259,5	47,6	0,0
Boubon Golf	85	13,6	0,5	64,8	168,0	275.2	83,7	7,7
Brousse Tigree	401	0,0	1,4	57,7	82.3	334.1	50,7	0.0
Chef de Village	268	0,0	1,3	45,9	104,5	310.9	74,3	0,0
Darey	18	0,0	0.4	39.8	113,6	341.0	50,7	0,0
Debere Gati	25	13.3	36,0	70,0	118,1	216,9	62,9	0,0
Fandou Beri	9	0.0	3,3	85,6	103,2	279,4	88,8	0,0
Gamonzon	34	0.0	15,7	54,7	81.4	234.3	27.6	0,0
Gardana Kouara	50	8,5	1,5	67,5	101.5	287,3	50,2	0,0
Gorou Goussa	80	6,5	2.6	61.4	73.1	259,4	89.6	
Guilahel	49	0,5	30,8	106,0	117,6	239,4	63,2	0,0
Jama jachère	411	0,0	1,8	53,7	93,3	318,4		
Iarikanassou	41	0,0	5,6	66,5	121.8	150.0	69,1 17,5	0,0
H Jachere hapex I	105	8,0	13.2	80,9	109,7	261.4	79,7	0,0 5,5
Kaligorou	61	11.5	20.6	48.7	129,9	259.0	54.6	
Care	29	5,2	28,4	73,0	142,7	201.8		0,0
Kare Kokorbe Fandou	73	0,9					42,6	0,5
cokoroc randou Kollo	54	5.5	6,3	44,6	78,8	220,2	48,5	0,0
Koure Kobade	26		7,7	84,4	122,4	247,4	57,7	0,0
Coure Sud	20 51	5,9 4,5	26,2	46,6	99,3	234,7	82,2	0,0
Koyria	82		16,7	77,9	88,5	168,2	19,5	0,0
		12,6	0,0	45,5	101,0	224,7	37,5	0,0
/lali Djibo	269	0,0	0,0	53,3	83,0	309,2	61,0	0,0
fassi Koubou	78	19,5	1,5	72,6	69,2	215,5	61,5	0,0
Viamey Aeroport	94	16,0	3,4	80,3	102,3	197,7	85,1	0,0
Viamey IRI	83	1,0	5,5	103,9	101,7	216,6	73,0	0,0
liamey ORSTOM	70	3,8	1,4	87,7	127,3	209,4	107,5	0,0
andideye	57	0,0	8,0	57,3	64,1	168,9	25,0	0,0
amadey 2	405	0,0	2,0	48,0	98,4	306,5	40,3	0,0
D Bagou	410	0,0	0,7	46,7	102,1	320,4	40,2	0,0
anaberi	32	2,7	7,1	69,0	106,0	296,8	72,9	1,5
orodi	86	26,3	3,0	114,7	131,7	278,9	79,4	2,0
Vankama	116	0,4	0,0	52,2	145,0	287,7	57,4	0,0
llade	35	0,5	31,1	45,6	87,7	218,7	59,5	0,0
lobong 301	301	15,5	3,0	68,7	142,7	213,6	59,4	0,0
Tobong 304	304	11,5	3,0	64,8	131,1	182,4	46,5	0,0
Cobong 306	306	13,6	2,9	65,8	133,8	204,2	53,1	0,0
Cobong 308	308	12,7	2,5	65,1	146,2	215,4	72,1	0,0
lobong 310	310	14,4	3,0	63,9	134,9	195,0	59.8	0,0
Cobong 312	312	12,8	3,0	67,0	141,0	218,3	66.7	0,0
lobong 314	314	14,3	2,5	64.7	147,2	220.0	65.3	0.0
lobong 316	316	14.0	3,0	62,4	137,3	208,2	59,7	0.0
Cobong 318	318	15,7	2,9	63,8	137,0	199,1	58,6	0.0
lobong 320	320	14.5	2,9	68,9	143.9	221.5	54,3	0,0
lobong 323	323	14,7	2,8	71,5	140,3	206,0	53,6	0,0

Figure A-4.1: Cartes mensuelles d'isohyètes obtenues par krigeage des 38 stations du réseau de base + site central (cône de réception 1,50 m au-dessus du sol) pour les mois d'avril à septembre 1995.



A-4.2

#### ANNEXE 5. CUMULS SAISONNIERS AUX POSTES DU RESEAU DU NIGER

long.	lat.	mm	station	long.	lat.	mm	station
3.43	14.95	259,5	ABALA	12.85	13.43	289,7	GUESKEROU
6.25	15.47	173,7	ABALAK	6.76	13.66	451,8	GUIDAM ROUDJI
7.85	15.61	55.9	ADERBISSINAT	2.40	13.55	494.0	HAMDALLAYE
6.78	14.33	96.0	ADJE KORIA	8.38	19.08	29,0	IFEROUANE
7.98	16.97	49.6	AGADEZ	5.25	14.47	346,1	ILLELA
7.33	18.50	52.5	ARLIT	6.90	16.78	98,8	IN-GALL
0.85	14.75	277.8	AYOROU	5.83	14.76	259,2	INKIMIA
1.65	13.78	366,4	BAC-FARIE	12.45	13.48	317.0	KABELAWA
5.36	14.51	414,3	BADEGUICHIRI	2.93	13.23	342,8	KALA PATE
2.97	13.77	435,8	BALLEYARA	5.51	14.86	361,7	KALFOU
5.08	14.72	267,8	BAMBEYE	5.75	15.23	303,8	KAO
8.88	13.18	417.1	BANDE HAOUSSA	5.67	14.47	309,9	KAOUARA ABDOU
6.10	13.72	354,2	BANGUI	5.26	14.15	435,1	KARAE
2.50	15.05	238,7	BANIBANGOU	3.63	12.80	559.0	KARA - KARA
0.72	14.57	342,3	BANKILARE	1.82	13.67	396,4	KARMA
5.10	13.78	420.5	BAZAGA	9.25	13.98	287,7	KASSAMA
8.07	14.65	301,1	BELBEDЛ	5.77	14.77	326,4	KEITA
2.87	12.75	584,7	BEYLANDE	2.35	13.30	525,1	KOLO
12.92	18.68	21,5	BILMA	6.90	14.10	408.5	KORNAKA
2.90	13.08	460,5	BIRNI NGOUARE	5.98	14.10	412.3	MADAOUA
10.00	14.18	309,9	BIRNI NKAZOE	7.15	13.31	550.2	MADAROUNFA
5.28	13.80	442,2	BIRNI N KONNI	8.93	12.98	673,0	MAGARIA
3.07	14.00	450,2	BONKOUKOU	11.98	13.23	322,0	MAINE-SOROA
12.27	13.17	269,7	BOUDOUM	5.50	13.97	600,6	MALBAZA
11.33	13.65	250.3	BOUTTI	7.08	13.47	481,5	MARADI AERO
6.05	14.42	247,1	BOUZA	2.15	13.48	484.8	NIAMEY AEROPOR
3.43	14.42	426.7	CHIKAL	2.13	13.50	537,1	NIAMEY ORSTOM
6.45	14.68	265.9	DAKARO	13.12	14.25	125,1	N GUIGMI
7.25	13.16	352.4	DAN ISSA	13.20	15.30	100,0	N GOURTI
1.82	13.92	410.8	DARGOL	2.08	14.32	427,3	OUALLAM
1.88	13.61	460.0	DARTIENDE	7.12	13.40	347,7	SAFO
12.62	13.42	306,7	DIFFA	7.52	14.70	228.8	SOLI
8.23	13.30	517,4	DODORI	8.93	17.41	220,0	TABELOT
9.33	12.90	318,2	DOGO	3.30	14.90	345,0	TAHOUA
4.00	13.63	364,8	DOGONDOUTCHI	8.52	13.67	286,7	TAKIETA
0.28	14.68	321,3	DOLBEL	5.65	14.81	320,0	TAMASKE
3.18	13.02	427,6	DOSSO	8.82	14.95	212.7	TANOUT
9.31	13.56	347,5	DROUM MALORI	2.40	14.93	611,2	TAPOA
2.85	12.53	591,6	FALMEY	5.70	16.86	56,1	TASSARA
3.58	13.52	423,8	FALOUEL	5.80	15.88	163,1	TCHINTABARADEN
1.08	14.55	259,7	FAMALE	4.45	14.82	216.4	TEBARAM
3.32	14.35	299,3	FILINGUE	0.82	14.02	496.3	TERA
5.66	13.96	450.0	GALMI	7.98	13.75	496,3	TESSAOUA
5.77	14.55	311,7	GARHANGA	7.03	13.75	570,8	TIBIRI MARADI
3.45	14.55	630,2	GAYA	1.45	13.38	416,9	TILLABERY
1.58	13.82	389,3	GOTHEYE	10001000	14.20	416,9	TILLABER I
1.50	13.72	248,4	GOUDOUMARIA	4.78	13.12		TORODI
7.23	13.72	248,4	GOULA	1.100 2021		611,4	
10.30	14.65	257,1	GOURE	3.28	14.50	247,3	TOUKOUNOUS
3.88	13.98	256,8	GUECHEME	8.98	13.78	319,5	ZINDER

### ANNEXE 6. LISTE DES VARIOGRAMMES MODELISES

### 1- Variogrammes par evenements

No evenement	Modele	Pepite	Portee	Palier
1	gaussien	0	15	40
	gaussien	0	25	25
2 3	linéaire	Ö	0,3	1250
4	linéaire	3	0,05	
5	exponentiel	õ	25	60
	puissance	Ō	0,3	1,35
6 7	exponentiel	0	14	70
8	spherique	50	70	230
9	gaussien	20	10	40
10	exponentiel	0	10	180
11	gaussien	0	15	70
12	linéaire	0	0,9	
13	gaussien	0	15	100
14	linéaire	30	2	
15	linéaire	50	1,5	
16	exponentiel	0	10	70
17	gaussien	0	25	90
18	gaussien	0	30	800
19	gaussien	0	20	50
20	spherique	0	90	150
21	gaussien	0	25	480
22	gaussien	0	12	50
23	gaussien	0	25	100
24	linéaire	20	0,4	
25	exponentiel	120	10	250
26	gaussien	7	15	30
27	gaussien	7	50	300
28	spherique	0	40	4
29	linéaire	10	0,8	
30	spherique	0	50	100
31	exponentiel	0	3	100
32	linéaire	250	0,01	

# 2- Variogrammes decadaires

No decade	Modele	Pepite	Portee	Palier
climatique	linéaire	35	0.01	
1 11-20/04	spherique	0	30	20
2 21-30/04	gaussien	0	20	50
3 01-10/05	gaussien	0	18	60
4 11-20/05	gaussien	0	20	4
5 21-31/05	gaussien	0	20	40
6 01-10/06	linéaire	0	0,5	1000
7 11-20/06	exponentiel	0	10	200
8 21-30/06	exponentiel	45	15	150
9 01-10/07	linéaire	30	9	
10 11-20/07	gaussien	0	20	400
11 21-31/07	gaussien	60	15	350
12 01-10/08	linéaire	1000	0,01	
13 11-20/08	linéaire	600	0,01	
14 21-31/08	linéaire	300	0,01	
15 01-10/09	gaussien	0	30	25
16 11-20/09	spherique	0	70	15
17 21-30/09	spherique	80	45	270
18 01-10/10	gaussien	0	13	2

#### 3- Variogrammes mensuels

Mois	Modele	Pepite	Portee	Palier
Avril	spherique	0	35	65
Mai	gaussien	0	20	100
Juin	spherique	0	20	300
Juillet	spherique	0	20	680
Aout	gaussien	0	25	3500
Septembre	spherique	100	35	400

# ANNEXE 7. LISTE DES FICHIERS CREES LORS DU TRAITEMENT DES DONNEES PLUVIOGRAPHIQUES

Tableau A-7.1: Liste des fichiers .oe3, images cartouches.

alkama1	oe3	darev3	oe3	ihjache3	oe3	kobo3084	oe3	kobo3214	003
alkama2	oe3	darey4	oe3	ihjache4	oe3	kobo3091	oe3	kobo3221	
alkama3	oe3	debereg1	oe3	ihjache5	oe3	kobo3092		kobo3222	
alkama4	oe3	debereg2	oe3	ihjache6	oe3	kobo3093		kobo3223	
alkama5	oe3	debereg3	oe3	iril	oe3	kobo3094		kobo3224	
banizos1	oe3	debereg4	oe3	iri2	oe3	kobo3101	oe3	kobo3231	oe3
banizos2	oe3	debereg5	oe3	iri3	oe3	kobo3102		kobo3232	
banizos3	oe3	deberes1	oe3	iri4	oe3	kobo3103		kobo3232	oe3
banizos4	oe3	deberes2	oe3	iri5	oe3	kobo3104		kobo3234	
banizos5	oe3	deberes3	oe3	kaligor1	oe3	kobo3111	oe3	kobo3235	oe3
banizou1	oe3	deberes4	oe3	kaligor2	oe3	kobo3112		kobo3241	
banizou2	oe3	deberes5	oe3	kaligor3	oe3	kobo3113	oe3	kobo3242	oe3
banizou3	oe3	fandoub1	oe3	kaligor4	oe3	kobo3114		kobo3242	oe3
banizou4	oe3	fandoub2	oe3	kaligor5	oe3	kobo3121	oe3	kobo3243	10.000
banizou5	oe3	fandoub3	oe3	kare1	oe3	kobo3122	oe3	kobo3251	oe3
bazanga1	oe3	fandoub4	oe3	kare2	oe3	kobo3123	oe3	kobo3252	oe3
bazanga2	oe3	fandoub5	oe3	kare3	oe3	kobo3124	oe3	kobo3252	oe3
bazanga3	oe3	gamonzo1		kare4	oe3	kobo3131	1012748	kobo3255	oe3
bazanga4	oe3	gamonzo2		kare5	oe3	kobo3132	oe3		oe3
bazanga5	oe3	gamonzo3	1. T. T. T. T	kobo3011	oe3	kobo3132	oe3	kobo3255	oe3
berikoi1	oe3	gamonzo4		kobo3012	oe3	kobo3133	oe3	kokorbel	oe3
berikoi2	oe3	gardanal	oe3	kobo3012	oe3	kobo3134	oe3	kokorbe2	oe3
berikoi3	oe3	gardana2	oe3	kobo3013	oe3	kobo3141	oe3	kokorbe3	oe3
berikoi4	oe3	gardana3	oe3	kobo3021		kobo3142	oe3	kokorbe4	oe3
berikoi5	oe3	gardana4	oe3	kobo3022	oe3 oe3	kobo3143	oe3	kokorbe5	oe3
berkiaw1	oe3	gardana5	oe3	kobo3022	이 아님이 같은 신경감 것		oe3	kollo1	oe3
berkiaw2	oe3	gorougo1	oe3	kobo3023	oe3	kobo3152	oe3	kollo2	oe3
berkiaw3	oe3	gorougo2	oe3	kobo3024	oe3	kobo3153	oe3	kollo3	oe3
berkiaw4	oe3	gorougo3	oe3	kobo3023	oe3	kobo3154	oe3	kollo4	oe3
berkiaw5	oe3	gorougo4	oe3	kobo3032	oe3	kobo3161	oe3	kollo5	oe3
bololad1	oe3	gorougo5			oe3	kobo3162	oe3	kolloso1	oe3
bololad2	oe3	gorouso1	oe3	kobo3033	oe3	kobo3163	oe3	kolloso2	oe3
bololad3	oe3		oe3	kobo3034	oe3	kobo3164	oe3	kolloso3	oe3
bololad4	oe3	gorouso2	oe3	kobo3041	oe3	kobo3171	oe3	kolloso4	oe3
bololad5	oe3	gorouso3	oe3	kobo3042	oe3	kobo3172	oe3	kolloso5	oe3
boubon1	oe3	gorouso4	oe3	kobo3043	oe3	kobo3173	oe3	koureko1	oe3
boubon2	oe3	gorouso5 guilahe1	oe3	kobo3044	oe3	kobo3174	oe3	koureko2	oe3
boubon3	oe3	guilahe2	oe3	kobo3051	oe3	kobo3181	oe3	koureko3	oe3
boubon4	oe3	guilahe3	oe3	kobo3052	oe3	kobo3182	oe3	koureko4	oe3
boubon5		· · · · · · · · · · · · · · · · · · ·	oe3	kobo3053	oe3	kobo3183	oe3	koureko5	oe3
boubon6	oe3	guilahe4	oe3	kobo3054	oe3	kobo3184	oe3	kouresu1	oe3
23	oe3	guilahe5	oe3	kobo3061	oe3	kobo3191	oe3	kouresu2	oe3
brousse1	oe3	hajache1	oe3	kobo3062	oe3	kobo3192	oe3	kouresu3	oe3
brousse2	oe3		oe3	kobo3063	oe3	kobo3193	oe3	kouresu4	oe3
brousse3	oe3	hajache3	oe3	kobo3064	oe3	kobo3194	oe3	kouresu5	oe3
brousse4	oe3		oe3	kobo3071	oe3	kobo3201	oe3	koyria1	oe3
chedvil1	oe3		oe3	kobo3072	oe3	kobo3202	oe3	koyria2	oe3
chedvil2	oe3		oe3	kobo3073	oe3	kobo3203	oe3	koyria3	oe3
chedvil3	oe3	harikan3	oe3	kobo3074	oe3	kobo3204	oe3	koyria4	oe3
chedvil4	oe3		oe3	kobo3081	oe3	kobo3211	oe3	koyria5	oe3
dareyl	oe3		oe3	kobo3082	oe3	kobo3212	oe3	malidji1	oe3
darey2	oe3	ihjache2	oe3	kobo3083	oe3	kobo3213	oe3	malidji2	oe3

suite du ta malidji3	oe3	niameya4	oe3	samad24	oe3	tanaber2	oe3	wankama2
malidji4	oe3	niameya5	oe3	sandide1	oe3	tanaber3	oe3	wankama3
massiko1	oe3	orstom1	oe3	sandide2	oe3	tanaber4	oe3	wankama4
massiko2	oe3	orstom2	oe3	sandide3	oe3	tanaber5	oe3	wankama5
massiko2	oe3	orstom3	oe3	sandide4	oe3	torodil	oe3	yillade1
massiko4	oe3	orstom4	oe3	sdbagou1	oe3	torodi2	oe3	yillade2
massiko4	oe3	orstom5	oe3	sdbagou2	oe3	torodi3	oe3	yillade3
	oe3	samad21	oe3	sdbagou3	oe3	torodi4	oe3	yillade4
niameyal		samad22	oe3	sdbagou4	0.000 (19.03)	torodi5	oe3	yillade5
niameya2 niameya3	oe3 oe3	samad23	oe3	tanaber1	oe3	wankama l	CT. (CT.) CT.	

A-7.2

Tableau A-7.2: Liste des fichiers .lab, issus d'une première mise en forme par le logiciel PLUVIOM.

								C 11 10 2020	
alkamal	lab	debereg3	lab	iri5	lab	kobo3121	lab	kobo3254	lab
alkama2	lab	debereg4	lab	kaligor1	lab	kobo3122	lab	kobo3255	lab
alkama3	lab	debereg5	lab	kaligor2	lab	kobo3123	lab	kokorbe1	lab
alkama4	lab	deberes1	lab	kaligor3	lab	kobo3124	lab	kokorbe2	lab
alkama5	lab	deberes2	lab	kaligor4	lab	kobo3131	lab	kokorbe3	lab
banizos1	lab	deberes3	lab	kaligor5	lab	kobo3132	lab	kokorbe4	lab
banizos2	lab	deberes4	lab	karel	lab	kobo3133	lab	kokorbe5	lab
banizos3	lab	deberes5	lab	kare2	lab	kobo3134	lab	kollo1	lab
banizos4	lab	fandoub1	lab	kare3	lab	kobo3141	lab	kollo2	lab
banizos5	lab	fandoub2	lab	kare4	lab	kobo3142	lab	kollo3	lab
banizou1	lab	fandoub3	lab	kare5	lab	kobo3143	lab	kollo4	lab
banizou2	lab	fandoub4	lab	kobo3011	lab	kobo3151	lab	kollo5	lab
banizou3	lab	fandoub5	lab	kobo3012	lab	kobo3152	lab	kolloso1	lab
banizou4	lab	gamonzo1		kobo3013	lab	kobo3153	lab	kolloso2	lab
banizou5	lab	gamonzo2		kobo3014	lab	kobo3154	lab	kolloso3	lab
bazanga1	lab	gamonzo3		kobo3021	lab	kobo3161	lab	kolloso4	lab
bazanga2	lab	gamonzo4		kobo3023	lab	kobo3162	lab	kolloso5	lab
bazanga3	lab	gardana l	lab	kobo3024	lab	kobo3163	lab	koureko1	lab
bazanga4	lab	gardana2	lab	kobo3025	lab	kobo3164	lab	koureko2	lab
bazanga5	lab	gardana3	lab	kobo3031	lab	kobo3171	lab	koureko3	lab
berikoi1	lab	gardana4	lab	kobo3032	lab	kobo3172	lab	koureko4	lab
berikoi2	lab	gardana5	lab	kobo3033	lab	kobo3173	lab	koureko5	lab
berikoi3	lab	gorougol	lab	kobo3034	lab	kobo3174	lab	kouresu1	lab
berikoi4	lab	gorougo2	lab	kobo3041	lab	kobo3181	lab	kouresu2	lab
berikoi5	lab	gorougo3	lab	kobo3042	lab	kobo3182	lab	kouresu3	lab
berkiaw1	lab	gorougo4	lab	kobo3043	lab	kobo3183	lab	kouresu4	lab
berkiaw2	lab	gorougo5	lab	kobo3044		kobo3184	lab	kouresu5	lab
berkiaw3	lab	gorouso1	lab	kobo3051	lab	kobo3191	lab	koyrial	lab
berkiaw4	lab	gorouso2	lab	kobo3052		kobo3192	lab	koyria2	lab
berkiaw5	lab	gorouso3	lab	kobo3053		kobo3193	lab	koyria3	lab
bololad1	lab	gorouso4	lab	kobo3054		kobo3194	lab	koyria4	lab
bololad2	lab	gorouso5	lab	kobo3061	lab	kobo3201	lab	koyria5	lab
bololad3	lab	guilahe1	lab	kobo3062		kobo3202	lab	malidji1	lab
bololad4	lab	guilahe2	lab	kobo3063		kobo3203	lab	malidji2	lab
bololad5	lab	guilahe3	lab	kobo3064		kobo3204		malidji3	lab
boubon1	lab	guilahe4	lab	kobo3071	lab	kobo3211	lab	malidji4	lab
boubon2	lab	guilahe5	lab	kobo3072		kobo3212		massiko1	lab
boubon2 boubon3	lab	hajache1	lab	kobo3073		kobo3213		massiko2	lab
boubon3	lab	hajache2	lab	kobo3074		kobo3214		massiko3	lab
	lab	hajache3	lab	kobo3081		kobo3221		massiko4	lab
boubon5		hajache4	lab	kobo3082		kobo3222		massiko5	lab
boubon6	lab lab	harikanl	lab	kobo3083		kobo3223		niameya1	
brousse1 brousse2		harikan2	lab	kobo3084		kobo3224		niameya2	2012/21
brousse3	lab	harikan3	lab	kobo3091		kobo3231		niameya3	8 - 22202-00-
	lab	harikan4	lab	kobo3092		kobo3232		niameva4	
brousse4	lab	ihjache1	lab	kobo3093		kobo3233		niameya5	2 12 12 12
chedvill	lab	ihjache2	lab	kobo3094		kobo3234		orstom1	lab
chedvil2 chedvil3	lab	ihjache3	lab	kobo3101		kobo3235		orstom2	lab
chedvil4	lab	ihjache4	lab	kobo3102		kobo3241		orstom3	lab
	lab			kobo3102		kobo3242		orstom4	lab
darey1	lab	ihjache5	lab	kobo3104		kobo3243		orstom5	lab
darey2	lab	ihjache6	lab	kobo3111		kobo3244		samad21	lab
darey3	lab	iri1	lab			kobo3251		samad22	lab
darey4	lab	iri2	lab	kobo3112		kobo3252		samad23	lab
debereg1	lab	iri3	lab	kobo3113 kobo3114		kobo3253		samad24	lab
debereg2	lab	iri4	lab	K0005114	<ul> <li>Tab</li> </ul>	RUUU323.	au	Summer	au

## A-7,4

#### suite du tableau A-7.2

sandide1 sandide2 sandide3 sandide4 sdbagou1 sdbagou2	lab lab lab lab lab	sdbagou3 sdbagou4 tanaber1 tanaber2 tanaber3	lab lab lab lab lab	tanaber5 torodi1 torodi2 torodi3 torodi4 torodi5	lab lab lab lab lab	wankama1 lab wankama2 lab wankama3 lab wankama4 lab wankama5 lab villade1 lab	yillade2 yillade3 yillade4 yillade5	lab lab lab lab
sdbagou2	lab	tanaber4	lab	torodi5	lab	yillade1 lab		

Tableau A-7.3: Liste des fichiers .txt, créés et gérés par BADINAGE, banque de données pluviographiques.

alkama	txt	gardana	txt	kobo306	txt	kobo321	txt	samad2	txt
banizos	txt	gorougo	txt	kobo307	txt	kobo322	txt	sdbagou	txt
banizou	txt	gorouso	txt	kobo308	txt	kobo323	txt	sandide	txt
bazanga	txt	guilahe	txt	kobo309	txt	kobo324	txt	tanaber	txt
berikoi	txt	hajache	txt	kobo310	txt	kobo325	txt	torodi	txt
berkiaw	txt	harikan	txt	kobo311	txt	kokorbe	txt	wankama	txt
bololad	txt	ihjache	txt	kobo312	txt	kollo	txt	yillade	txt
boubon	txt	iri	txt	kobo313	txt	kolloso	txt	2	
brousse	txt	kaligor	txt	kobo314	txt	koureko	txt		
chedvil	txt	kare	txt	kobo315	txt	kouresu	txt		
darey	txt	kobo301	txt	kobo316	txt	kovria	txt		
debereg	txt	kobo302	txt	kobo317	txt	malidii	txt		
deberes	txt	kobo303	IXI	kobo318	txt	massiko	txt		
fandoub	txt	kobo304	txt	kobo319	txt	niameya	txt		
gamonzo	txt	kobo305	txt	kobo320	txt	orstom	txt		

A-7.5

in TES SERVICE RAPE ٢ -34980 SI-GAly-cho-Fasc - Thi. 67 84 27 66

Centre de Traitement de Documents Scientifiques